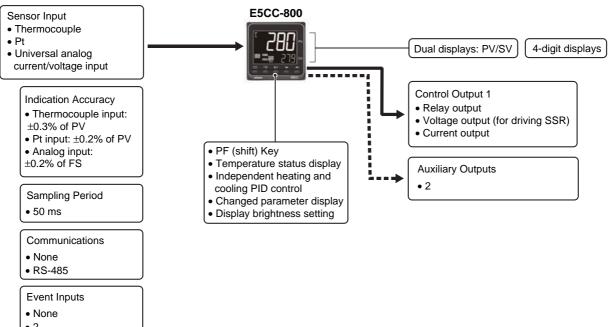
Digital Temperature Controller (Simple Type) 5CC-800 (48 × 48 mm)

Large White PV Display That's Easier to Read. Easy to Use, from Model Selection to Setup and Operation. A Complete Range of I/O Capacities, Functions, and Performance. Handles More Applications.


- The white PV display with a height of 15.2 mm improves visibility.
- High-speed sampling at 50 ms.
- Short body with depth of only 60 mm.
- Easy connections to a PLC with programless communications. Use component communications to link Temperature Controllers to each other.

 \mathbb{A} Refer to Safety Precautions on page 33.

Main I/O Functions

Model Number Legend and Standard Models

Model Number Legend

E5CC-800 48x48mm

Control output 1	Auxiliary output	Communications	Heater burnout	Event inputs	Power supply voltage	Model
Relay output						E5CC-RX2ASM-800
Voltage output	-				100 to 240 VAC	E5CC-QX2ASM-800
Current output	-					E5CC-CX2ASM-800
Relay output	-		-	-		E5CC-RX2DSM-800
Voltage output	-				24 VAC/VDC	E5CC-QX2DSM-800
Current output	Two	-				E5CC-CX2DSM-800
Relay output					400 to 040 \/AC	E5CC-RX2ASM-801
Voltage output				Two	100 to 240 VAC	E5CC-QX2ASM-801
Relay output						E5CC-RX2DSM-801
Voltage output			2		24 VAC/VDC	E5CC-QX2DSM-801
Relay output			One		100/ 010/100	E5CC-RX2ASM-802
Voltage output					100 to 240 VAC	E5CC-QX2ASM-802
Relay output		DO 405		-	041/400//00	E5CC-RX2DSM-802
Voltage output		RS-485			24 VAC/VDC	E5CC-QX2DSM-802
Current output				T	100 to 240 VAC	E5CC-CX2ASM-804
Current output			-	Two	24 VAC/VDC	E5CC-CX2DSM-804

Heating and Cooling Control

• Using Heating and Cooling Control

(1) Control Output Assignment

An auxiliary output is used as the cooling control output.

2 Control

If PID control is used, you can set PID control separately for heating and cooling.

This allows you to handle control systems with different heating and cooling response characteristics.

Optional Products (Order Separately)

Terminal Covers

	Model	
	E53-COV17	
	E53-COV23	

Note: The E53-COV10 cannot be used. Refer to page 10 for the mounted dimensions.

Waterproof Packing

Model	
Y92S-P8	

Note: This Waterproof Packing is provided with the Digital Temperature Controller.

Current Transformers (CTs)

Hole diameter	Model
5.8 mm	E54-CT1
12.0 mm	E54-CT3

Adapter

Model
Y92F-45

Note: Use this Adapter when the panel has already been prepared for an E5B Controller.

DIN Track Mounting Adapter

Model
Y92F-52

Waterproof Cover

Model											
Y92A-48N											
			-								

Note: This Cover complies with IP66 and NEMA 4X waterproofing. Front panel: IP66 protection.

Mounting Adapter

Model
Y92F-49

Note: This Mounting Adapter is provided with the Digital Temperature Controller.

Front Covers

Туре	Model
Hard Front Cover	Y92A-48H
Soft Front Cover	Y92A-48D

E5CC-800

Specifications

Ratings

		-						
Power suppl	y voltage	A in model number: 100 to 240 VAC, 50/60 Hz D in model number: 24 VAC, 50/60 Hz; 24 VDC						
Operating vo	ltage range	85% to 110% of rated supply voltage						
Power consu	Imption	5.2 VA max. at 100 to 240 VAC, and 3.1 VA max. at 24 VDC or 1.6 W max. at 24 VDC						
Sensor input	1	Models with temperature inputs Thermocouple: K, J, T, E, L, U, N, R, S, B, W, or PL II Platinum resistance thermometer: Pt100 or JPt100 Infrared temperature sensor (ES1B): 10 to 70°C, 60 to 120°C, 115 to 165°C, or 140 to 260°C Analog input Current input: 4 to 20 mA or 0 to 20 mA Voltage input: 1 to 5 V, 0 to 5 V, or 0 to 10 V Current input: 150 Ω max., Voltage input: 1 MΩ min. (Use a 1:1 connection when connecting the ES2-HB/THB.)						
Input impeda	ance							
Control meth	nod	ON/OFF control or 2-PID control (with auto-tuning)						
Relay output		SPST-NO, 250 VAC, 3 A (resistive load), electrical life: 100,000 operations, minimum applicable load: 5 V, 10 mA						
Control output	Voltage output (for driving SSR)	Output voltage: 12 VDC ±20% (PNP), max. load current: 21 mA, with short-circuit protection circuit						
	Current output	4 to 20 mA DC/0 to 20 mA DC, load: 500 Ω max., resolution: approx. 10,000						
Auxiliary	Number of outputs	2						
output	Output specifications	N.O. relay outputs, 250 VAC, Models with 2 outputs: 3 A (resistive load), Electrical life: 100,000 operations, Minimum applicable load: 10 mA at 5 V						
	Number of inputs	2 or 4 (depends on model)						
Event innut		Contact input: ON: 1 kΩ max., OFF: 100 kΩ min.						
Event input	External contact input specifications	Non-contact input: ON: Residual voltage: 1.5 V max., OFF: Leakage current: 0.1 mA max.						
	specifications	Current flow: Approx. 7 mA per contact						
Setting meth	od	Digital setting using front panel keys						
Indication m	ethod	11-segment digital display and individual indicators Character height: PV: 15.2 mm, SV: 7.1 mm						
Multi SP		Up to eight set points (SP0 to SP7) can be saved and selected using event inputs, key operations, o serial communications.						
Other functions		Manual output, heating/cooling control, loop burnout alarm, SP ramp, other alarm functions, 40% A 100% AT, MV limiter, input digital filter, self tuning, PV input shift, run/stop, protection functions, extraction of square root, MV change rate limit, temperature status display, moving average of inp value, and display brightness setting						
Ambient ope	rating temperature	-10 to 55°C (with no condensation or icing), for 3-year warranty: -10 to 50°C (with no condensation or icing)						
Ambient ope	rating humidity	25% to 85%						
Storage tem	perature	-25 to 65°C (with no condensation or icing)						

Input type	Р		m res rmom	istano eter	e	Thermocouple														Infrared temperature sensor					
Name		Pt100	1	JPt	100	I	K		J		т	Е	L	l	J	Ν	R	S	В	W	PLII	10 to 70°C	60 to 120°C	115 to 165°C	140 to 260°C
Lame 2300 1800 1700 1600 1500 1400 1300 (C,) 1000 1000 1000 200 100 -200 -200	850	500.0	100.0	500.0			500.0	850	400.0	400	400.0	600	850	400	400.0							900	120°C	165°C	
Setting number	-200 0	-199.9	2	199.9 3	4	-200 5	6	7	8	-200 9	-199.9 10	-200 11	12	-200 13	-199.9 14	-200 15	16	17	18	19	20	21	22	23	24

Input Ranges (Universal inputs) • Thermocouple/Platinum Resistance Thermometer

Shaded settings are the default settings.

The applicable standards for the input types are as follows:

K, J, T, E, N, R, S, B: JIS C 1602-1995, IEC 60584-1

L: Fe-CuNi, DIN 43710-1985 U: Cu-CuNi, DIN 43710-1985

W: W5Re/W26Re, ASTM E988-1990

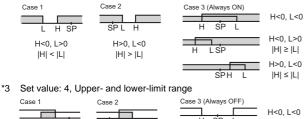
JPt100: JIS C 1604-1989, JIS C 1606-1989

Pt100: JIS C 1604-1997, IEC 60751

PL II: According to Platinel II electromotive force charts from BASF (previously Engelhard)

Analog input

Input type	Cur	rent	Voltage							
Input specification	4 to 20 mA	0 to 5 V	0 to 10 V							
Setting range	Usable in the following ranges by scaling: -1999 to 9999, -199.9 to 999.9, -19.99 to 99.99 or -1.999 to 9.999									
Setting number	25	26	27	28	29					


Alarm Outputs

Each alarm can be independently set to one of the following 19 alarm types. The default is 2: Upper limit. (see note.) Auxiliary outputs are allocated for alarms. ON delays and OFF delays (0 to 999 s) can also be specified.

Set	Alarm type	Alarm outp	ut operation			
value		When alarm valueWhen alarm valueX is positiveX is negative		Description of function		
0	Alarm function OFF	rm function OFF Output OFF		No alarm		
1	Upper- and lower-limit *1		*2	Set the deviation in the set point by setting the alarm uppe limit (H) and alarm lower limit (L). The alarm is ON when the PV is outside this deviation range.		
2	Upper-limit	ON OFF SP PV	ON OFF SP PV	Set the upward deviation in the set point by setting the ala value (X). The alarm is ON when the PV is higher than the by the deviation or more.		
3	Lower-limit	ON X CON	ON X PV	Set the downward deviation in the set point by setting the alarm value (X). The alarm is ON when the PV is lower than the SP by the deviation or more.		
4	Upper- and lower-limit range *1	ON OFF SP PV	*3	Set the deviation in the set point by setting the alarm upper limit (H) and alarm lower limit (L). The alarm is ON when th PV is inside this deviation range.		
5	Upper- and lower-limit with standby sequence *1	*5 OFF SP PV	*4	A standby sequence is added to the upper- and lower-limit alarm (1). $^{*}6$		
6	Upper-limit with standby sequence	ON OFF SP PV	ON X - PV	A standby sequence is added to the upper-limit alarm (2). *		
7	Lower-limit with standby sequence	ON X - PV	ON X PV	A standby sequence is added to the lower-limit alarm (3). *6		
8	Absolute-value upper-limit		ON OFF 0	The alarm will turn ON if the process value is larger than the alarm value (X) regardless of the set point.		
9	Absolute-value lower-limit	ON $\rightarrow X \rightarrow$ OFF 0	$ON \qquad \qquad$	The alarm will turn ON if the process value is smaller than the alarm value (X) regardless of the set point.		
10	Absolute-value upper-limit with standby sequence			A standby sequence is added to the absolute-value upper-lin it alarm (8). *6		
11	Absolute-value lower-limit with standby sequence	$\begin{array}{c c} ON & \overleftarrow{-X \rightarrow} \\ OFF & 0 \end{array} PV$		A standby sequence is added to the absolute-value lower-lim alarm (9). *6		
12	LBA (alarm 1 type only)		-	*7		
13	PV change rate alarm		-	*8		
14	SP absolute value upper limit	ON OFF 0 0	ON OFF 0	This alarm type turns ON the alarm when the set point (SP) in higher than the alarm value (X).		
15	SP absolute value lower limit	ON OFF 0 SP		This alarm type turns ON the alarm when the set point (SP) smaller than the alarm value (X).		
16	MV absolute value upper limit *9	ON → X→ MV OFF 0		This alarm type turns ON the alarm when the manipulated variable (MV) is higher than the alarm value (X).		
17	MV absolute value lower limit *9			This alarm type turns ON the alarm when the manipulated variable (MV) is smaller than the alarm value (X).		

independently for each alarm type, and are expressed as "L" and "H."

*2 Set value: 1, Upper- and lower-limit alarm

Case 1	Case 2	Case 3 (Always OFF)	
			H<0, L<0
L H SP	SPL H	H SP L	
H<0, L>0	H>0, L<0		H<0, L>0
H < L	H > L	H LSP	H ≥ L
			H>0, L<0
		SPH L	H ≤ L

- For Upper- and Lower-Limit Alarm Described Above *2 Case 1 and 2

Always OFF when the upper-limit and lower-limit hysteresis overlaps. Case 3: <u>Always OFF</u>

- *5. Set value: 5, Upper- and lower-limit with standby sequence <u>Always OFF</u> when the upper-limit and lower-limit hysteresis overlaps.
 *6 Refer to the E5 C Digital Controllers User's Manual (Cat. No. H174) for

information on the operation of the standby sequence. Refer to the E5 \Box C Digital Controllers User's Manual (Cat. No.H174) for *7

Information on the loop burnout alarm (LBA). Refer to the E5 \Box C Digital Controllers User's Manual (Cat. No. H174) for information on the PV change rate alarm. When heating/cooling control is performed, the MV absolute upper limit *8

*9 alarm functions only for the heating operation and the MV absolute lower limit alarm functions only for the cooling operation.

Characteristics

ccuracy ent temperature of 23°C)	Platinum resistance thermometer: $(\pm 0.2\% \text{ of indicated value or } \pm 0.8\% \text{C}$, whichever is greater) ± 1 digitAnalog input: $\pm 0.2\% \text{ FS} \pm 1$ digit max.CT input: $\pm 5\% \text{ FS} \pm 1$ digit max.				
temperature *2	Thermocouple input (R, S, B, W, PL II): (±1% of PV or ±10°C, whichever is greater) ±1 digit max.				
voltage *2	Other thermocouple input: (±1% of PV or ±4°C, whichever is greater) ±1 digit max. *3 Platinum resistance thermometer: (±1% of PV or ±2°C, whichever is greater) ±1 digit max. Analog input: (±1%FS) ±1 digit max. CT input: (±5%FS) ±1 digit max.				
ing period	50 ms				
	Temperature input: 0.1 to 999.9°C or °F (in units of 0.1°C or °F) *4 Analog input: 0.01% to 99.99% FS (in units of 0.01% FS)				
l band (P)	Temperature input: 0.1 to 999.9°C or °F (in units of 0.1°C or °F) *4 Analog input: 0.1% to 999.9% FS (in units of 0.1% FS)				
e (I)	0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *5				
me (D)	0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *5				
l band (P) for cooling	Temperature input: 0.1 to 999.9°C or °F (in units of 0.1°C or °F) *4 Analog input: 0.1% to 999.9% FS (in units of 0.1% FS)				
e (I) for cooling	0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *5				
me (D) for cooling	0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *5				
od	0.1, 0.2, 0.5, 1 to 99 s (in units of 1 s)				
t value	0.0 to 100.0% (in units of 0.1%)				
g range	-1999 to 9999 (decimal point position depends on input type)				
nal source resistance	Thermocouple: $0.1^{\circ}C/\Omega$ max. (100 Ω max.) Platinum resistance thermometer: $0.1^{\circ}C/\Omega$ max. (10 Ω max.)				
esistance	20 MΩ min. (at 500 VDC)				
rength	2,300 VAC, 50 or 60 Hz for 1 min (between terminals with different charge)				
resistance	10 to 55 Hz, 20 m/s ² for 10 min each in X, Y, and Z directions				
Malfunction	10 to 55 Hz, 20 m/s ² for 2 hrs each in X, Y, and Z directions				
Shock resistance	100 m/s ² , 3 times each in X, Y, and Z directions				
Malfunction	300 m/s ² , 3 times each in X, Y, and Z directions				
	Controller: Approx. 120 g, Mounting Bracket: Approx. 10 g				
otection	Front panel: IP66, Rear case: IP20, Terminals: IP00				
tection	Non-volatile memory (number of writes: 1,000,000 times)				
Approved standards	UL 61010-1, CSA C22.2 No. 611010-1 (evaluated by UL), KOSHA certified (some models) *6, Korean Radio Waves Act (Act 10564)				
Conformed standards	EN 61010-1 (IEC 61010-1): Pollution level 2, overcurrent category II, Lloyd's standards *7				
·	EMI: EN61326 Radiated Interference Electromagnetic Field Strength: EN 55011 Group 1, class A Noise Terminal Voltage: EN 55011 Group 1, class A EMS: EN 61326 ESD Immunity: EN 61000-4-2 Electromagnetic Field Immunity: EN 61000-4-3 Burst Noise Immunity: EN 61000-4-6 Surge Immunity: EN 61000-4-6 Voltage Dip/Interrupting Immunity: EN 61000-4-5				
	voltage *2 ing period l band (P) e (I) me (D) l band (P) for cooling e (I) for cooling me (D) for cooling od t value g range nal source resistance rength resistance rength resistance Malfunction Shock resistance Malfunction cotection tection tection				

*1 The indication accuracy of K thermocouples in the -200 to 1300°C range, T and N thermocouples at a temperature of -100°C max., and U and L thermocouples at any temperatures is ±2°C ±1 digit max. The indication accuracy of the B thermocouple at a temperature of 400°Cmax. is not specified. The indication accuracy of B thermocouples in the 400 to 800°Crange is ±3°C max. The indication accuracy of the R and S thermocouples at a temperature of 200°C max. is ±3°C ±1 digit max. The indication accuracy of W thermocouples is ±0.3 of PV or ±3°C, whichever is greater, ±1 digit max. The indication accuracy of PL II thermocouples is ±0.3 of PV or ±2°C, whichever is greater, ±1 digit max.
*2 Ambient temperature: -10°C to 23°C to 55°C, Voltage range: -15% to 10% of rated voltage

*3 K thermocouple at -100°C max.: $\pm 10^{\circ}$ C max.

*4 "EU" stands for Engineering Unit and is used as the unit after scaling. For a temperature sensor, the EU is °C or °F.

*5 The unit is determined by the setting of the Integral/Derivative Time Unit parameter.

*6 Access the following website for information on certified models. http://www.ia.omron.com/support/models/index.html

*7 Refer to information on maritime standards in *Shipping Standards* on page 35 for compliance with Lloyd's Standards.

Communications Specifications

Transmission line connection method	RS-485: Multipoint		
Communications	RS-485 (two-wire, half duplex)		
Synchronization method	Start-stop synchronization		
Protocol	CompoWay/F, or Modbus		
Baud rate	19200, 38400, or 57600 bps		
Transmission code	ASCII		
Data bit length*	7 or 8 bits		
Stop bit length*	1 or 2 bits		
Error detection	Vertical parity (none, even, odd) Block check character (BCC) with CompoWay/F or CRC-16 Modbus		
Flow control	None		
Interface	RS-485		
Retry function	None		
Communications buffer	217 bytes		
Communications response wait time	0 to 99 ms Default: 20 ms		

 $^{\ast}\,$ The baud rate, data bit length, stop bit length, and vertical parity can be individually set using the Communications Setting Level.

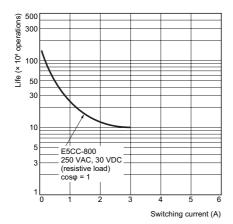
Communications Functions

Programless communications*	 You can use the memory in the PLC to read and write E5□C parameters, start and stop operation, etc. The E5□C automatically performs communications with PLCs. No communications programming is required. Number of connected Temperature Controllers: 16 max. Applicable PLCs OMRON PLCs SYSMAC CS Series, CJ Series, or CP Series Mitsubishi Electric PLCs MELSEC Q Series or L Series
Communications between components*	 When Temperature Controllers are connected, the parameters can be copied from the Temperature Controller that is set as the master to Temperature Controllers that are set as slaves. Number of connected Temperature Controllers: 16 max. (including master) When Temperature Controllers are connected, set points and RUN/STOP commands can be sent from the Temperature Controller that is set as the master to Temperature Controllers that are set as slaves. Ratio and offsets can be set for the set point. Number of connected Temperature Controllers that are set as slaves.

* A Temperature Controller with version 1.1 or higher is required.

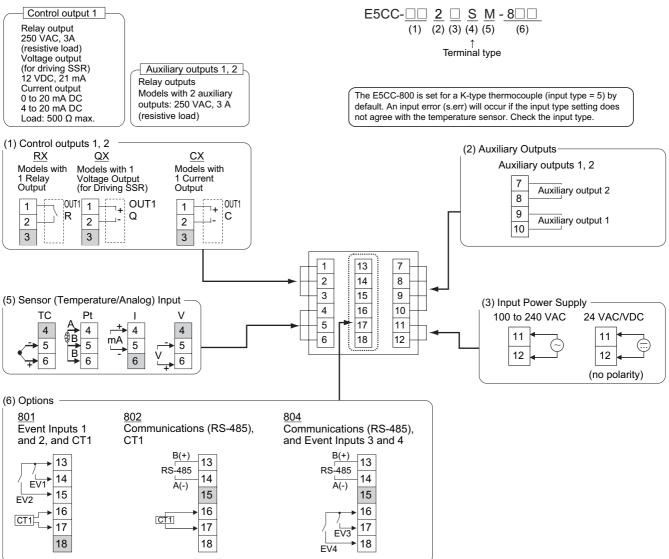
Current Transformer (Order Separately) Ratings

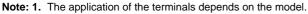
Dielectric strength	1,000 VAC for 1 min
Vibration resistance	50 Hz, 98 m/s ²
Weight	E54-CT1: Approx. 11.5 g, E54-CT3: Approx. 50 g
Accessories (E54-CT3 only)	Armatures (2) Plugs (2)


Heater Burnout Alarms and SSR Failure Alarms

CT input (for heater current detection)	Models with detection for single-phase heaters: One input Models with detection for single-phase or three-phase heaters: Two inputs		
Maximum heater current	50 A AC		
Input current indication accuracy	±5% FS ±1 digit max.		
Heater burnout alarm setting range *1	0.1 to 49.9 A (in units of 0.1 A) Minimum detection ON time: 100 ms *3		
SSR failure alarm setting range *2	0.1 to 49.9 A (in units of 0.1 A) Minimum detection OFF time: 100 ms *4		

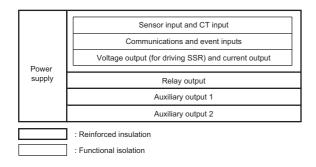
*1 For heater burnout alarms, the heater current will be measured when the control output is ON, and the output will turn ON if the heater current is lower than the set value (i.e., heater burnout detection current value).

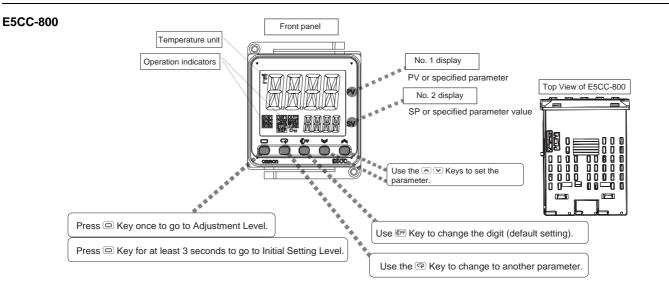

*2 For SSR failure alarms, the heater current will be measured when the control output is OFF, and the output will turn ON if the heater current is higher than the set value (i.e., SSR failure detection current value). *3 The value is 30 ms for a control period of 0.1 s or 0.2 s. *4 The value is 35 ms for a control period of 0.1 s or 0.2 s.


Electrical Life Expectancy Curve for Relays (Reference Values)

External Connections

E5CC-800

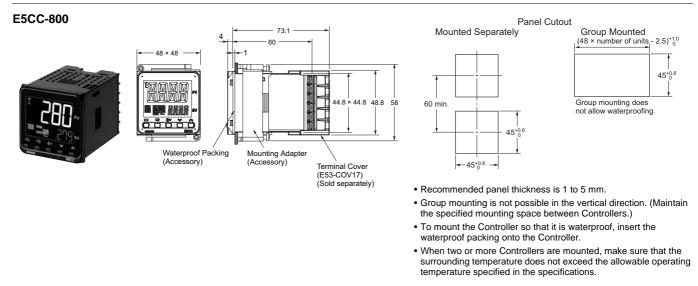



- 2. Do not wire the terminals that are shown with a gray background.
- **3.** When complying with EMC standards, the cable that connects the sensor must be 30 m or less. If the cable length exceeds 30 m, compliance with EMC standards will not be possible.
- 4. Connect M3 crimped terminals.

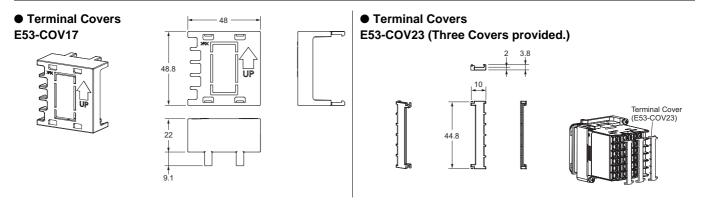
E5CC-800

Isolation/Insulation Block Diagrams

Nomenclature



E5CC-800


(Unit: mm)

Dimensions

Controllers

Accessories (Order Separately)

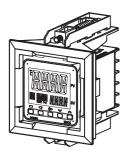
• Waterproof Packing Y92S-P8 (for DIN 48 × 48) (Provided with the Controller.) The Waterproof Packing is provided with the Temperature Controller. Order the Waterproof Packing separately if it becomes lost or damaged.

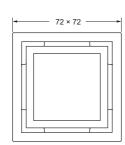
The Waterproof Packing can be used to achieve an IP66 degree of protection.

(Deterioration, shrinking, or hardening of the waterproof packing may occur depending on the operating environment. Therefore, periodic replacement is recommended to ensure the level of waterproofing specified in IP66. The time for periodic replacement depends on the operating environment. Be sure to confirm this point at your site.

Consider three years a rough standard. OMRON shall not be liable for the level of water resistance if the customer does not perform periodic replacement.)

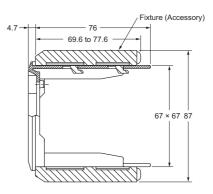
The Waterproof Packing does not need to be attached if a waterproof structure is not required.

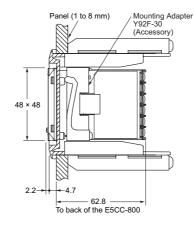

Adapter


- Y92F-45
- Note: 1. Use this Adapter when the Front Panel has already been prepared for the $E5B\square$.

2. Only black is available.

Mounted to E5CC-800

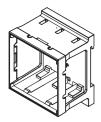


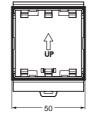


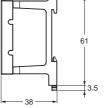
-72 × 72 -

őőč

<u>Lo</u>L

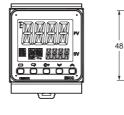


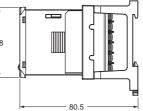


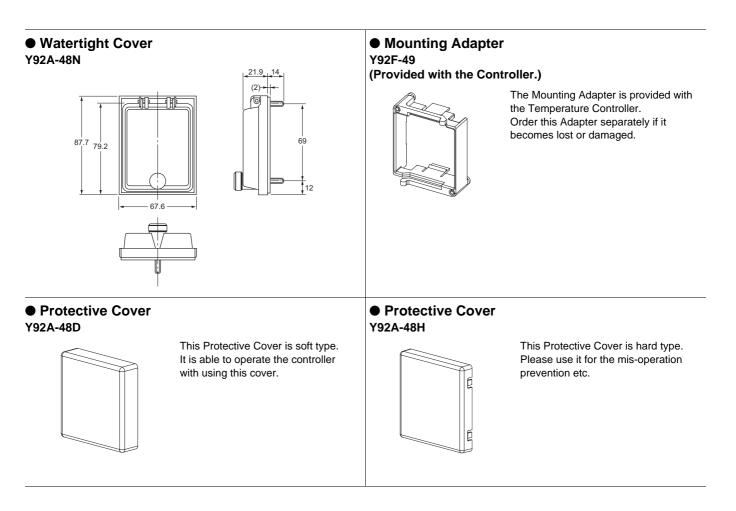

DIN Track Mounting Adapter

Y92F-52

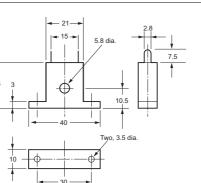
- Note: 1. This Adapter cannot be used together with the Terminal Cover.
 - 2. Remove the Terminal Cover to use the Adapter.





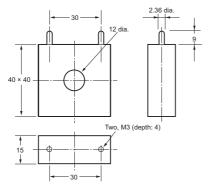

This Adapter is used to mount the E5CC-800 to a DIN Track. If you use the Adapter, there is no need for a plate to mount in the panel or to drill mounting holes in the panel.

Mounted to E5CC-800

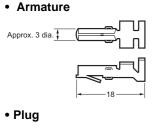


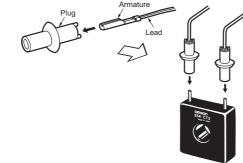
E5CC-800

• Current Transformers



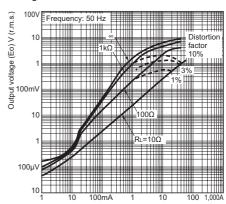
E54-CT3




Connection Example

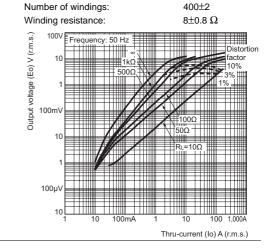
E54-CT3 Accessory

Approx. 6 dia


- (22)

Thru-current (Io) vs. Output Voltage (Eo) (Reference Values)

E54-CT1


 $\begin{array}{ll} \mbox{Maximum continuous heater current:} & 50 \mbox{ A} (50/60 \mbox{ Hz}) \\ \mbox{Number of windings:} & 400 \mbox{\pm} 2 \\ \mbox{Winding resistance:} & 18 \mbox{\pm} 2 \mbox{ \Omega} \end{array}$

Thru-current (Io) A (r.m.s.)

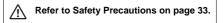
Thru-current (Io) vs. Output Voltage (Eo) (Reference Values) E54-CT3

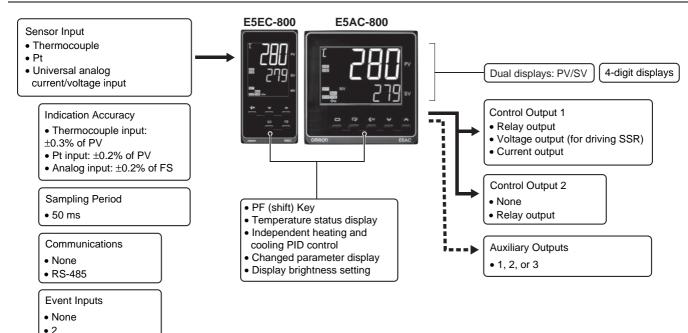
Maximum continuous heater current: 120 A (50/60 Hz) (Maximum continuous heater current for an OMRON Digital Temperature Controller is 50 A.)

<u> </u>	
	МЕМО

Digital Temperature Controller (Simple Type) E5EC/E5AC-800

Large White PV Display That's Easier to Read. Easy to Use, from Model Selection to Setup and Operation. A Complete Range of I/O Capacities, Functions, and Performance. Handles More Applications.


- A white LCD PV display with a height of approx. 18 mm for the E5EC-800 and 25 mm for the E5AC-800 improves visibility.
- High-speed sampling at 50 ms.
- Short body with depth of only 60 mm.
- Easy connections to a PLC with programless communications. Use component communications to link Temperature Controllers to each other.
- The new position-proportional control models allow you to control valves as well.


Main I/O Functions

48 × 96 mm E5EC-800

96 × 96 mm E5AC-800

• 4

Model Number Legend and Standard Models

Model Number Legend

E5EC-800 48x96 mm

Control output 1	Control output 2	Auxiliary output	Communications	Heater burnout	Event inputs	Power supply voltage	Model
Relay output	-			-	-	100 to 240 VAC	E5EC-RX2ASM-800
Voltage output	-						E5EC-QX2ASM-800
Current output	-						E5EC-CX2ASM-800
Relay output	Relay output						E5EC-RR2ASM-800
Voltage output	Relay output						E5EC-QR2ASM-800
Current output	Relay output						E5EC-CR2ASM-800
Relay output	-		-				E5EC-RX2DSM-800
Voltage output	-						E5EC-QX2DSM-800
Current output	-					24 VAC/VDC	E5EC-CX2DSM-800
Relay output	Relay output		wo				E5EC-RR2DSM-800
Voltage output	Relay output						E5EC-QR2DSM-800
Current output	Relay output						E5EC-CR2DSM-800
Relay output	Relay output			One	Two	100 to 240 VAC	E5EC-RR2ASM-808
Voltage output	Relay output						E5EC-QR2ASM-808
Relay output	Relay output		KS-485			24 VAC/VDC	E5EC-RR2DSM-808
Voltage output	Relay output						E5EC-QR2DSM-808
Relay output	Relay output					100 to 240 VAC	E5EC-RR2ASM-810
Voltage output	Relay output					100 to 240 VAC	E5EC-QR2ASM-810
Relay output	Relay output		-			24 VAC/VDC	E5EC-RR2DSM-810
Voltage output	Relay output	1					E5EC-QR2DSM-810
Current output	Relay output		DC 495		Ture	100 to 240 VAC	E5EC-CR2ASM-804
Current output	Relay output	1	RS-485	-	Two	24 VAC/VDC	E5EC-CR2DSM-804
Relay output (Open)*	Relay output (Close)*	-					E5EC-PR0ASM-800
Relay output (Open)*	Relay output (Close)*	T	-	-	-	100 to 240 VAC	E5EC-PR2ASM-800
Relay output (Open)*	Relay output (Close)*	Two	RS-485	1	Two		E5EC-PR2ASM-804

* Position proportional control model.

E5AC-800 96x96 mm

Control output 1	Control output 2	Auxiliary output	Communications	Heater burnout	Event inputs	Power supply voltage	Model		
Relay output	-						E5AC-RX1ASM-800		
Voltage output	-	One					E5AC-QX1ASM-800		
Current output	-					400 1 0 40 1 40	E5AC-CX1ASM-800		
Relay output	-					100 to 240 VAC	E5AC-RX3ASM-800		
Voltage output	-	Three					E5AC-QX3ASM-800		
Current output	-						E5AC-CX3ASM-800		
Relay output	-		-	-	-		E5AC-RX1DSM-800		
Voltage output	-	One					E5AC-QX1DSM-800		
Current output	-					24 VAC/VDC	E5AC-CX1DSM-800		
Relay output	-	RS-485					E5AC-RX3DSM-800		
Voltage output	-						E5AC-QX3DSM-800		
Current output	-						E5AC-CX3DSM-800		
Relay output	-						E5AC-RX3ASM-808		
Voltage output	-			-	50.405		Ŧ	100 to 240 VAC	E5AC-QX3ASM-808
Relay output	-			Two		E5AC-RX3DSM-808			
Voltage output	-	Three		0		24 VAC/VDC	E5AC-QX3DSM-808		
Relay output	-			One		400 1 0 40 1/40	E5AC-RX3ASM-810		
Voltage output	-				-	100 to 240 VAC	E5AC-QX3ASM-810		
Relay output	-		-		Four	04.1/4.0.0/100	E5AC-RX3DSM-810		
Voltage output	-					24 VAC/VDC	E5AC-QX3DSM-810		
Current output	-	1	DO 105		Ŧ	100 to 240 VAC	E5AC-CX3ASM-804		
Current output	-	1	RS-485	-	Two	24 VAC/VDC	E5AC-CX3DSM-804		
Relay output (Open)*	Relay output (Close)*	-					E5AC-PR0ASM-800		
Relay output (Open)*	Relay output (Close)*	-	-	-	-	100 to 240 VAC	E5AC-PR2ASM-800		
Relay output (Open)*	Relay output (Close)*	Two	RS-485	1	Two	1	E5AC-PR2ASM-804		

* Position proportional control model.

E5EC/E5AC-800

Heating and Cooling Control

I Using Heating and Cooling Control

(1) Control Output Assignment

If there is no control output 2, an auxiliary output is used as the cooling control output.

If there is a control output 2, the two control outputs are used for heating and cooling.

(It does not matter which output is used for heating and which output is used for cooling.) (2) Control

If PID control is used, you can set PID control separately for heating and cooling.

This allows you to handle control systems with different heating and cooling response characteristics.

Optional Products (Order Separately)

Terminal Covers

Model	
E53-COV24	

Waterproof Packing

Applicable Controller	Model
E5EC-800	Y92S-P9
E5AC-800	Y92S-P10

Note: This Waterproof Packing is provided with the Digital Temperature Controller.

Waterproof Cover

Applicable Controller	Model
E5EC-800	Y92A-49N
E5AC-800	Y92A-96N

Note: This Cover complies with IP66 and NEMA 4X waterproofing. Front panel: IP66 protection.

Front Port Cover

Model	
Y92S-P7	

Note: This Front Port Cover is provided with the Digital Temperature Controller.

Mounting Adapter

Model

Y92F-51

(Two Adapters are included.)

Note: This Mounting Adapter is provided with the Digital Temperature Controller.

Current Transformers (CTs)

Hole diameter	Model
5.8 mm	E54-CT1
12.0 mm	E54-CT3

Specifications

Ratings

Rainigo							
Power supply voltage			A in model number: 100 to 240 VAC, 50/60 Hz D in model number: 24 VAC, 50/60 Hz; 24 VDC				
Operating voltage range		e	85% to 110% of rated supply voltage				
Power consumption E5EC-800 E5AC-800		E5EC-800	6.6 VA max. at 100 to 240 VAC, and 4.1 VA max. at 24 VDC or 2.3 W max. at 24 VDC				
		E5AC-800	7.0 VA max. at 100 to 240 VAC, and 4.2 VA max. at 24 VDC or 2.4 W max. at 24 VDC				
Sensor input			Models with temperature inputs Thermocouple: K, J, T, E, L, U, N, R, S, B, W, or PL II Platinum resistance thermometer: Pt100 or JPt100 Infrared temperature sensor (ES1B): 10 to 70°C, 60 to 120°C, 115 to 165°C, or 140 to 260°C Analog input Current input: 4 to 20 mA or 0 to 20 mA Voltage input: 1 to 5 V, 0 to 5 V, or 0 to 10 V				
Input impeda	ance		Current input: 150 Ω max., Voltage input: 1 M Ω min. (Use a 1:1 connection when connecting the ES2-HB/THB.)				
Control met	hod		ON/OFF control or 2-PID control (with auto-tuning)				
Control	Relay out	put	SPST-NO, 250 VAC, 5 A (resistive load), electrical life: 100,000 operations, minimum applicable load: 5 V, 10 mA				
output	Voltage output (for driving SSR)		Output voltage: 12 VDC \pm 20% (PNP), max. load current: 40 mA, with short-circuit protection circuit (The maximum load current is 21 mA for models with two control outputs.)				
	Current o	utput	4 to 20 mA DC/0 to 20 mA DC, load: 500 Ω max., resolution: approx. 10,000				
Auxiliary	Number of	of outputs	1, 2, or 3 (depends on model)				
output	Output specifications		N.O. relay outputs, 250 VAC, Models with 2 outputs: 3 A (resistive load), Electrical life: 100,000 operations, Minimum applicable load: 10 mA at 5 V				
	Number of	of inputs	1, 2, or 3 (depends on model)				
Event input			Contact input: ON: 1 k Ω max., OFF: 100 k Ω min.				
Event input	specificat	contact input	Non-contact input: ON: Residual voltage: 1.5 V max., OFF: Leakage current: 0.1 mA max.				
	specifications		Current flow: Approx. 7 mA per contact				
Setting meth	nod		Digital setting using front panel keys				
Indication m	ethod		11-segment digital display and individual indicators Character height: E5EC-800: PV: 18.0 mm, SV: 11.0 mm E5AC-800: PV: 25.0 mm, SV: 15.0 mm				
Multi SP			Up to eight set points (SP0 to SP7) can be saved and selected using event inputs, key operations, o serial communications.				
Bank switch	ing		None				
Other functions			Manual output, heating/cooling control, loop burnout alarm, SP ramp, other alarm functions, 40% AT, 100% AT, MV limiter, input digital filter, self tuning, PV input shift, run/stop, protection functions, ex- traction of square root, MV change rate limit, temperature status display, moving average of input value, and display brightness setting				
Ambient ope	erating tem	perature	-10 to 55°C (with no condensation or icing), for 3-year warranty: -10 to 50°C (with no condensation or icing)				
Ambient ope	erating hun	nidity	25% to 85%				
Storage tem	perature		-25 to 65°C (with no condensation or icing)				

Input Ranges (Universal inputs) • Thermocouple/Platinum Resistance Thermometer

Input t	уре	Р	thermometer								Infrared temperature sensor															
Name		Pt100		JPt	100	l	к		J		Т	Е	L	I	U	Ν	R	S	В	w	PLII	10 to 70°C	60 to 120°C	115 to 165°C	140 to 260°C	
	2300																				2300					
	1800																			1800						
	1700																	1700	1700							
	1600																									
	1500																									
	1400																									
	1300						1300										1300					1300				
ត	1200																									
Temperature range (°C)	1100																									
ge	1000																									
an	900	850							850					850												
ē	800																									
ţ	700	_							_																	
era	600	_							_				600													
đ	500	_	500.0		500.0			500.0	_																	
e	400								_	400.0	400	400.0			400	400.0	L _	L _								
F	300								_			_					L _	L _								260
	200								_			_					L _	L _						120	165	
	100			100.0		100.0			_				_								_	_	90		_	
		_	L –						_	L .			_	L –	L –		L –			100						
	-100	_	L –	0.0		0.0							_		L –		L –	0	0		0	0	0	0	0	0
	-200							-20.0	-100	-20.0				-100		L										
		-200	-199.9		-199.9		-200				-200	-199.9	-200		-200	-199.9	-200									
Setti rang		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Shaded settings are the default settings.

The applicable standards for the input types are as follows: K, J, T, E, N, R, S, B: JIS C 1602-1995, IEC 60584-1

JPt100: JIS C 1604-1989, JIS C 1606-1989

L: Fe-CuNi, DIN 43710-1985

U: Cu-CuNi, DIN 43710-1985

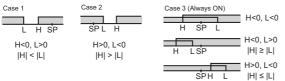
W: W5Re/W26Re, ASTM E988-1990

Pt100: JIS C 1604-1997, IEC 60751

PL II: According to Platinel II electromotive force charts from BASF (previously Engelhard)

Analog input

Input type	Cur	rent	Voltage				
Input specification	4 to 20 mA	0 to 20 mA	1 to 5 V	0 to 5 V	0 to 10 V		
Setting range	Usable in the following ranges by scaling: -1999 to 9999, -199.9 to 999.9, -19.99 to 99.99 or -1.999 to 9.999						
Setting number	25	26	27	28	29		


Alarm type

Each alarm can be independently set to one of the following 19 alarm types. The default is 2: Upper limit. (see note.) Auxiliary outputs are allocated for alarms. ON delays and OFF delays (0 to 999 s) can also be specified.

Set		Alarm outp					
value	Alarm type	When alarm value X is positive	When alarm value X is negative	Description of function			
0	Alarm function OFF	Outpu	it OFF	No alarm			
1	Upper- and lower-limit *1		*2	Set the deviation in the set point by setting the alarm upper limit (H) and alarm lower limit (L). The alarm is ON when the PV is outside this deviation range.			
2	Upper-limit	ON X PV	ON X + OFF SP PV	Set the upward deviation in the set point by setting the alarm value (X). The alarm is ON when the PV is higher than the SP by the deviation or more.			
3	Lower-limit	ON OFF SP PV	ON X PV	Set the downward deviation in the set point by setting the alarm value (X). The alarm is ON when the PV is lower than the SP by the deviation or more.			
4	Upper- and lower-limit range *1	ON L H OFF SP PV	*3	Set the deviation in the set point by setting the alarm upper limit (H) and alarm lower limit (L). The alarm is ON when the PV is inside this deviation range.			
5	Upper- and lower-limit with standby sequence *1	*5 OFF SP PV	*4	A standby sequence is added to the upper- and lower-limit alarm (1).*6 $$			
6	Upper-limit with standby sequence	ON OFF SP PV	ON X - PV	A standby sequence is added to the upper-limit alarm (2). *6			
7	Lower-limit with standby sequence	ON X F OFF SP PV	ON X PV	A standby sequence is added to the lower-limit alarm (3).*6			
8	Absolute-value upper-limit	ON OFF 0 PV		The alarm will turn ON if the process value is larger than the alarm value (X) regardless of the set point.			
9	Absolute-value lower-limit	ON OFF 0		The alarm will turn ON if the process value is smaller than the alarm value (X) regardless of the set point.			
10	Absolute-value upper-limit with standby sequence			A standby sequence is added to the absolute-value upper- limit alarm (8). *6			
11	Absolute-value lower-limit with standby sequence	ON OFF 0 PV		A standby sequence is added to the absolute-value lower-limit alarm (9). *6			
12	LBA (alarm 1 type only)		-	*7			
13	PV change rate alarm		-	*8			
14	SP absolute value upper limit			This alarm type turns ON the alarm when the set point (SP) is higher than the alarm value (X).			
15	SP absolute value lower limit	ON OFF 0 SP		This alarm type turns ON the alarm when the set point (SP) is smaller than the alarm value (X).			
16	MV absolute value upper limit *9			This alarm type turns ON the alarm when the manipulated variable (MV) is higher than the alarm value (X).			
17	MV absolute value lower limit *9	ON OFF 0 MV		This alarm type turns ON the alarm when the manipulated variable (MV) is smaller than the alarm value (X).			
	I		1	1			

*1 With set values 1, 4 and 5, the upper and lower limit values can be set independently for each alarm type, and are expressed as "L" and "H." Set value: 1, Upper- and lower-limit alarm

*2.

*3. Set value: 4, Upper- and lower-limit range

Case 1	Case 2	Case 3 (Always OFF)
L H SP	SPL H	H SP L H<0, L<0
H<0, L>0	H>0, L<0	H<0, L>0
H < L	H > L	H LSP H ≥ L
		H>0, L<0
		SPH L H ≤ L

*4. Set value: 5, Upper- and lower-limit with standby sequence For Upper- and Lower-Limit Alarm Described Above *2

Case 1 and 2

Always OFF when the upper-limit and lower-limit hysteresis overlaps. Case 3: <u>Always OFF</u>

- *5. Set value: 5, Upper- and lower-limit with standby sequence
- Always OFF when the upper-limit and lower-limit hysteresis overlaps. Refer to the E5 C Digital Controllers User's Manual (Cat. No. H174) for in-*6

formation on the operation of the standby sequence.

- Refer to the E5 C Digital Controllers User's Manual (Cat. No. H174) for in-*7. formation on the PV change rate alarm. This setting cannot be used with a position-proportional model.
- *8. Refer to the E5 C Digital Controllers User's Manual (Cat. No. H174) for information on the PV change rate alarm. When heating/cooling control is performed, the MV absolute upper limit
- *9. alarm functions only for the heating operation and the MV absolute lower limit alarm functions only for the cooling operation.

Characteristics

Indication ac (at the ambie		ature of 23°C)	Thermocouple: ($\pm 0.3\%$ of indicated value or $\pm 1^{\circ}$ C, whichever is greater) ± 1 digit max. *1 Platinum resistance thermometer: ($\pm 0.2\%$ of indicated value or $\pm 0.8^{\circ}$ C, whichever is greater) ± 1 digit Analog input: $\pm 0.2\%$ FS ± 1 digit max. CT input: $\pm 5\%$ FS ± 1 digit max. Potentiometer input: $\pm 5\%$ FS ± 1 digit max.				
Influence of temperature *2			Thermocouple input (R, S, B, W, PL II): $(\pm 1\% \text{ of PV or } \pm 10^{\circ}\text{C}$, whichever is greater) ± 1 digit max. Other thermocouple input: $(\pm 1\% \text{ of PV or } \pm 4^{\circ}\text{C}$, whichever is greater) ± 1 digit max. *3 Platinum resistance thermometer: $(\pm 1\% \text{ of PV or } \pm 2^{\circ}\text{C}$, whichever is greater) ± 1 digit max.				
Influence of	voltage *2		Analog input: $(\pm 1\% \text{ FS}) \pm 1$ digit max. CT input: $(\pm 5\% \text{ FS}) \pm 1$ digit max.				
Input sampli	ng period		50ms				
Hysteresis			Temperature input: 0.1 to 999.9°C or °F (in units of 0.1°C or °F) *4 Analog input: 0.01% to 99.99% FS (in units of 0.01% FS)				
Proportional	band (P)		Temperature input: 0.1 to 999.9°C or °F (in units of 0.1°C or °F) *4 Analog input: 0.1 to 999.9% FS (in units of 0.1% FS)				
Integral time	(I)		Standard, heating/cooling, or Position-proportional (Close) 0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) Position-proportional (Floating) 1 to 9999 s (in units of 1 s), 0.1 to 999.9 s (in units of 0.1 s)				
Derivative tir	ne (D)		0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *5				
Proportional band (P) for cooling			Temperature input: 0.1 to 999.9°C or °F (in units of 0.1°C or °F) *4 Analog input: 0.1 to 999.9% FS (in units of 0.1% FS)				
Integral time (I) for cooling		ling	0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *5				
Derivative time (D) for cooling		cooling	0 to 9999 s (in units of 1 s), 0.0 to 999.9 s (in units of 0.1 s) *5				
Control period			0.1, 0.2, 0.5, 1 to 99 s (in units of 1 s)				
Manual reset value			0.0 to 100.0% (in units of 0.1%)				
Alarm setting range			-1999 to 9999 (decimal point position depends on input type)				
Affect of sig	nal source	resistance	Thermocouple: $0.1^{\circ}C/\Omega$ max. (100 Ω max.) Platinum resistance thermometer: $0.1^{\circ}C/\Omega$ max. (10 Ω max.)				
Insulation re	sistance		20 MΩ min. (at 500 VDC)				
Dielectric str	ength		2,300 VAC, 50 or 60 Hz for 1 min (between terminals with different charge)				
Vibration	resistanc	e	10 to 55 Hz, 20 m/s ² for 10 min each in X, Y, and Z directions				
	Malfuncti	on	10 to 55 Hz, 20 m/s ² for 2 hrs each in X, Y, and Z directions				
Destruction	resistanc	-	100 m/s ² , 3 times each in X, Y, and Z directions				
	Malfuncti		300 m/s ² , 3 times each in X, Y, and Z directions				
Weight		E5EC-800	Controller: Approx. 210 g, Mounting Brackets: Approx. 4 g × 2				
-		E5AC-800	Controller: Approx. 250 g, Mounting Brackets: Approx. 4 g × 2				
• ·	Degree of protection		Front panel: IP66, Rear case: IP20, Terminals: IP00				
Memory prot		l standarda	Non-volatile memory (number of writes: 1,000,000 times)				
Standards Approved standards Conformed standards			UL 61010-1, CSA C22.2 No. 611010-1 (evaluated by UL), Korean Radio Waves Act (Act 10564) EN 61010-1 (IEC 61010-1): Pollution level 2, overcurrent category II, Lloyd's standards *6				
	Comornie	eu stanuarus	EM 61010-1 (IEC 61010-1). Politikon level 2, overcunent category II, Lloyd's standards '6 EMI EN61326				
EMC			Radiated Interference Electromagnetic Field Strength: EN 55011 Group 1, class ANoise Terminal Voltage:EN 55011 Group 1, class AEMS:EN 61326ESD Immunity:EN 61000-4-2Electromagnetic Field Immunity:EN 61000-4-3Burst Noise Immunity:EN 61000-4-4Conducted Disturbance Immunity:EN 61000-4-6Surge Immunity:EN 61000-4-5				
			Voltage Dip/Interrupting Immunity: EN 61000-4-11				

The indication accuracy of K thermocouples in the -200 to 1300°C range, T and N thermocouples at a temperature of -100°C max., and U and L thermocouples at any temperatures is $\pm 2^{\circ}$ C ± 1 digit max. The indication accuracy of the B thermocouple at a temperature of 400°C max. is not specified. The indication accuracy of B thermocouples in the 400 to 800°C range is $\pm 3^{\circ}$ C max. The indication accuracy of the R and S thermocouples at a temperature of 200°C max. is $\pm 3^{\circ}$ C ± 1 digit max. The indication accuracy of W thermocouples is ± 0.3 of PV or $\pm 3^{\circ}$ C, whichever is greater, ± 1 digit max. The indication accuracy of PV or $\pm 2^{\circ}$ C, whichever is greater, ± 1 digit max. *1.

*2. Ambient temperature: -10°C to 23°C to 55°C, Voltage range: -15% to 10% of rated voltage

K thermocouple at -100°C max.: ±10°C max.

*3. *4.

*4. "EU" stands for Engineering Unit and is used as the unit after scaling. For a temperature sensor, the EU is °C or °F.
*5. The unit is determined by the setting of the Integral/Derivative Time Unit parameter.
*6. Refer to information on maritime standards in *Shipping Standards* on page 35 for compliance with Lloyd's Standards.

Communications Specifications

Transmission line connection method	RS-485: Multipoint
Communications	RS-485 (two-wire, half duplex)
Synchronization method	Start-stop synchronization
Protocol	CompoWay/F, or Modbus
Baud rate	19200, 38400, or 57600 bps
Transmission code	ASCII
Data bit length*	7 or 8 bits
Stop bit length*	1 or 2 bits
Error detection	Vertical parity (none, even, odd) Block check character (BCC) with CompoWay/F or CRC-16 Modbus
Flow control	None
Interface	RS-485
Retry function	None
Communications buffer	217 bytes
Communications response wait time	0 to 99 ms Default: 20 ms

The baud rate, data bit length, stop bit length, and vertical parity can be in-dividually set using the Communications Setting Level.

Communications Functions

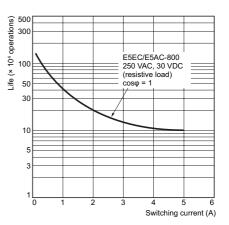
Programless communications*	 You can use the memory in the PLC to read and write E5 C parameters, start and stop operation, etc. The E5 C automatically performs communications with PLCs. No communications programming is required. Number of connected Temperature Controllers: 16 max. Applicable PLCs OMRON PLCS SYSMAC CS Series, CJ Series, or CP Series Mitsubishi Electric PLCs MELSEC Q Series or L Series
Communications between components*	 When Temperature Controllers are connected, the parameters can be copied from the Temperature Controller that is set as the master to Temperature Controllers that are set as slaves. Number of connected Temperature Controllers: 16 max. (including master) When Temperature Controllers are connected, set points and RUN/STOP commands can be sent from the Temperature Controller that is set as the master to Temperature Controllers that are set as slaves. Ratio and offsets can be set for the set point. Number of connected Temperature Controllers: 16 max. (including master)

* A Temperature Controller with version 1.1 or higher is required.

Current Transformer (Order Separately) Ratings

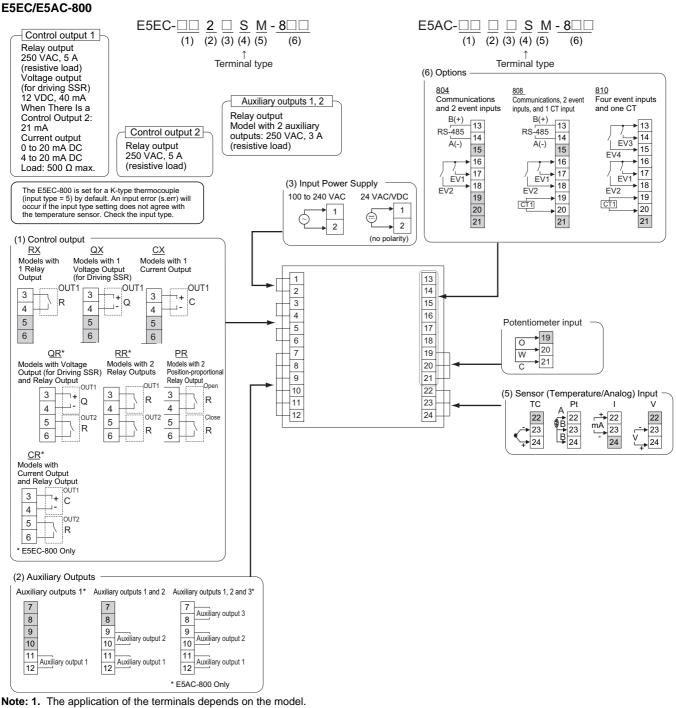
-			
Dielectric strength	1,000 VAC for 1 min		
Vibration resistance	50 Hz, 98 m/s ²		
Weight	E54-CT1: Approx. 11.5 g, E54-CT3: Approx. 50 g		
Accessories (E54-CT3 only)	Armatures (2) Plugs (2)		

Heater Burnout Alarms and SSR Failure Alarms


CT input (for heater current detection)	Models with detection for single-phase heaters: One input Models with detection for single-phase or three-phase heaters: Two inputs		
Maximum heater current	50 A AC		
Input current indica- tion accuracy	±5% FS ±1 digit max.		
Heater burnout alarm setting range *1	0.1 to 49.9 A (in units of 0.1 A) Minimum detection ON time: 100 ms *3		
SSR failure alarm setting range *2	0.1 to 49.9 A (in units of 0.1 A) Minimum detection OFF time: 100 ms *4		

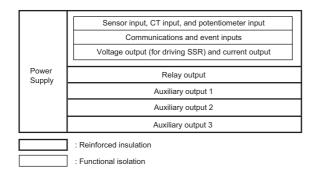
*1. For heater burnout alarms, the heater current will be measured when the control output is ON, and the output will turn ON if the heater current is lower than the set value (i.e., heater burnout detection current value).

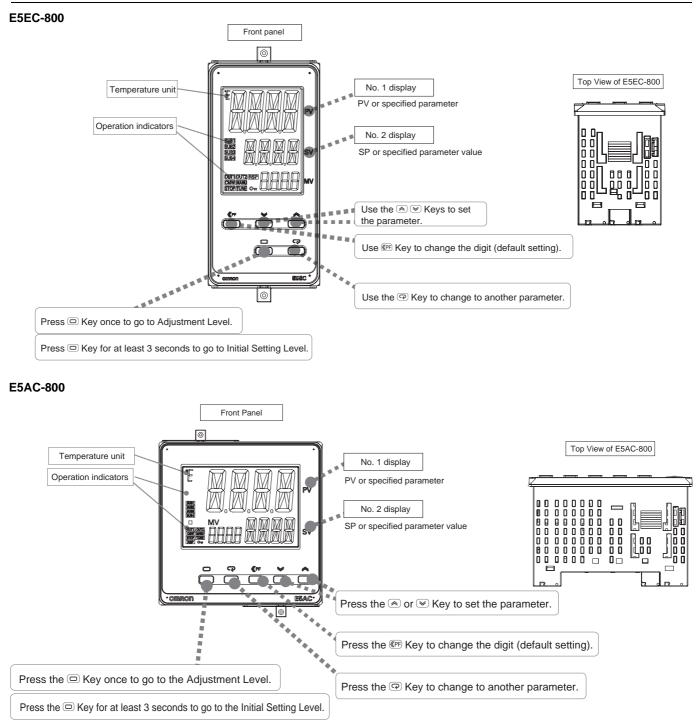
*2. For SSR failure alarms, the heater current will be measured when the control output is OFF, and the output will turn ON if the heater current is higher than the set value (i.e., SSR failure detection current value).
*3. The value is 30 ms for a control period of 0.1 s or 0.2 s.


*4. The value is 35 ms for a control period of 0.1 s or 0.2 s.

Electrical Life Expectancy Curve for Relays (Reference Values)

E5EC/E5AC-800

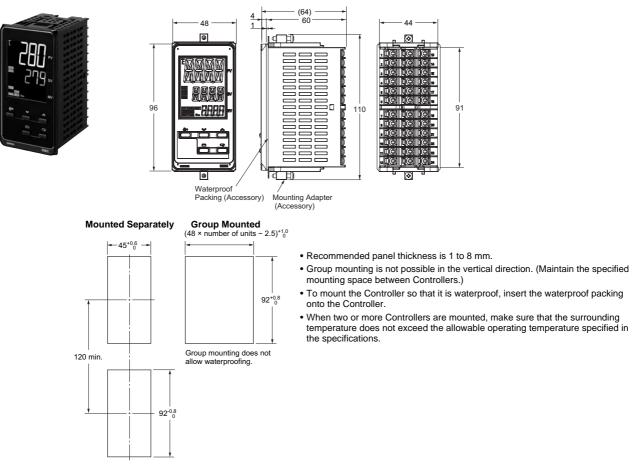

External Connections


2. Do not wire the terminals that are shown with a gray background.

- 3. When complying with EMC standards, the cable that connects the sensor must be 30 m or less. If the cable length exceeds 30 m, compliance with EMC standards will not be possible.
- 4. Connect M3 crimped terminals.

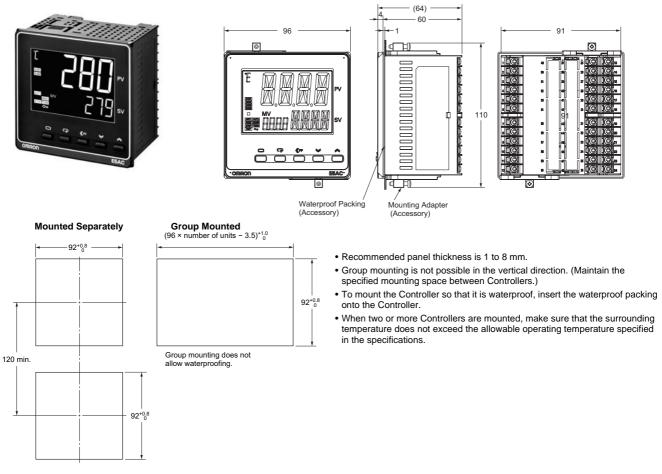
Isolation/Insulation Block Diagrams

Nomenclature

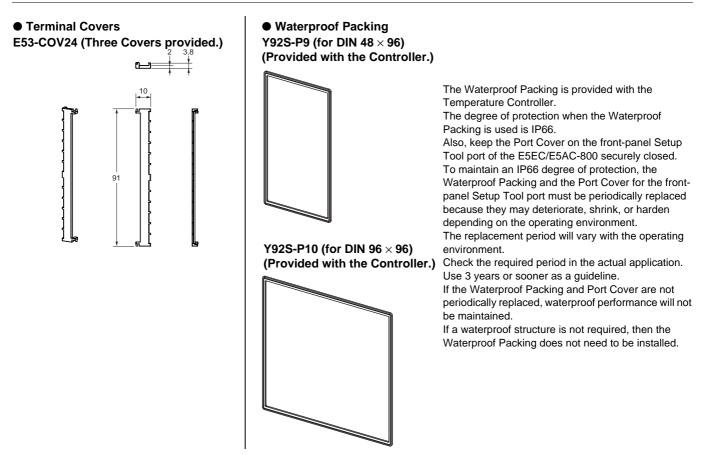


E5EC/E5AC-800

Dimensions

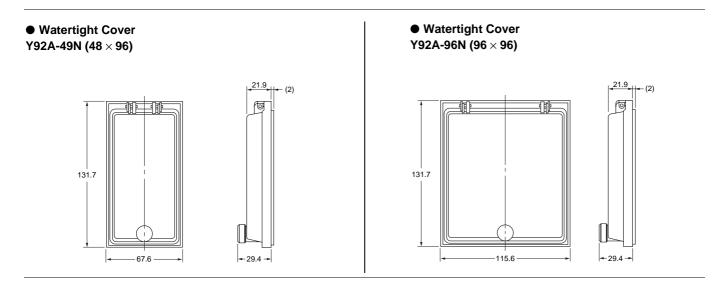

Controllers

E5EC-800

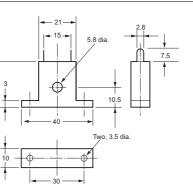


E5EC/E5AC-800

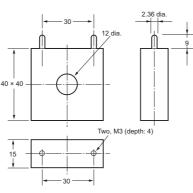
E5AC-800

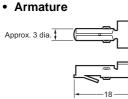

Accessories (Order Separately)

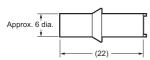
• Mounting Adapter Y92F-51 (for DIN 48 × 96) (Two Adapters provided.)

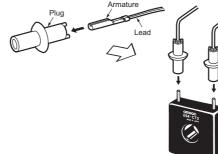

One pair is provided with the Controller. Order this Adapter separately if it becomes lost or damaged.

• Current Transformers

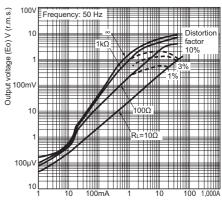

E54-CT1


E54-CT3



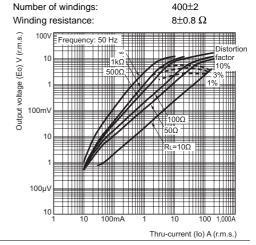

Connection Example

E54-CT3 Accessory



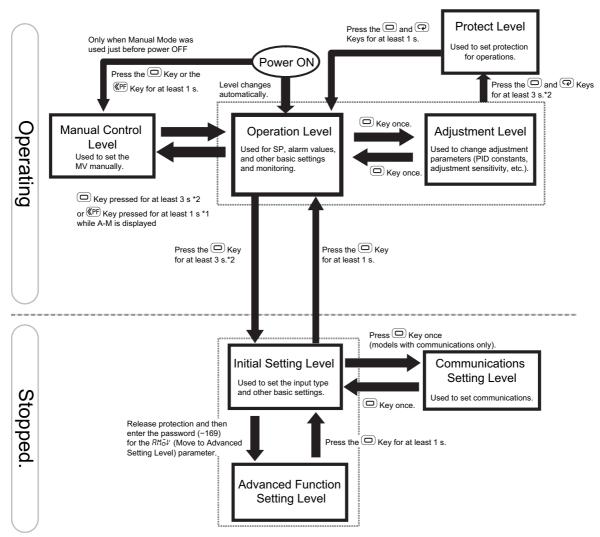
Thru-current (Io) vs. Output Voltage (Eo) (Reference Values)

E54-CT1


 $\begin{array}{ll} \mbox{Maximum continuous heater current:} & 50 \mbox{ A} (50/60 \mbox{ Hz}) \\ \mbox{Number of windings:} & 400 \mbox{\pm}2 \\ \mbox{Winding resistance:} & 18 \mbox{\pm}2 \mbox{ }\Omega \end{array}$

Thru-current (Io) A (r.m.s.)

Thru-current (Io) vs. Output Voltage (Eo) (Reference Values) E54-CT3


Maximum continuous heater current: 120 A (50/60 Hz) (Maximum continuous heater current for an OMRON Digital Temperature Controller is 50 A.)

Operation

Setting Levels Diagram

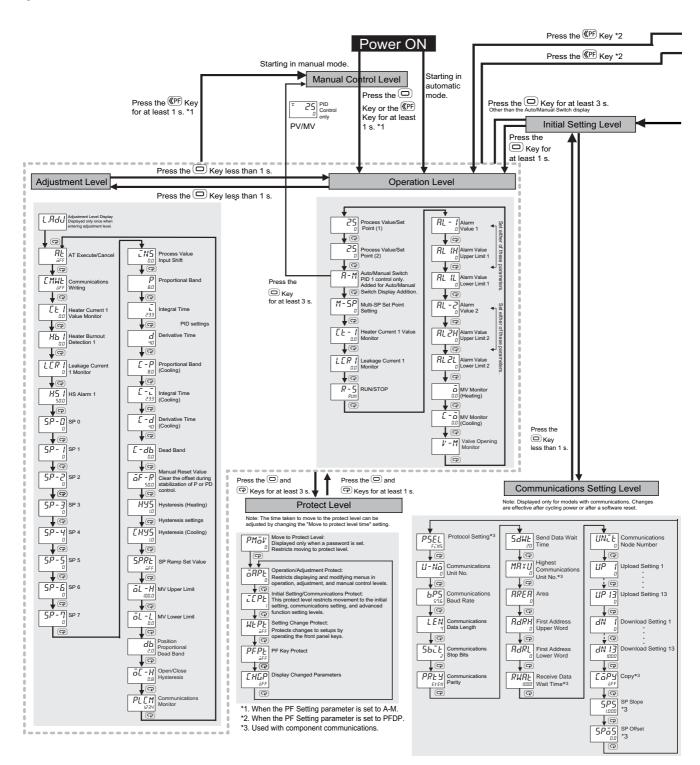
This diagram shows all of the setting levels. To move to the advanced function setting level and calibration level, you must enter passwords. Some parameters are not displayed depending on the protect level setting and the conditions of use. Control stops when you move from the operation level to the initial setting level.

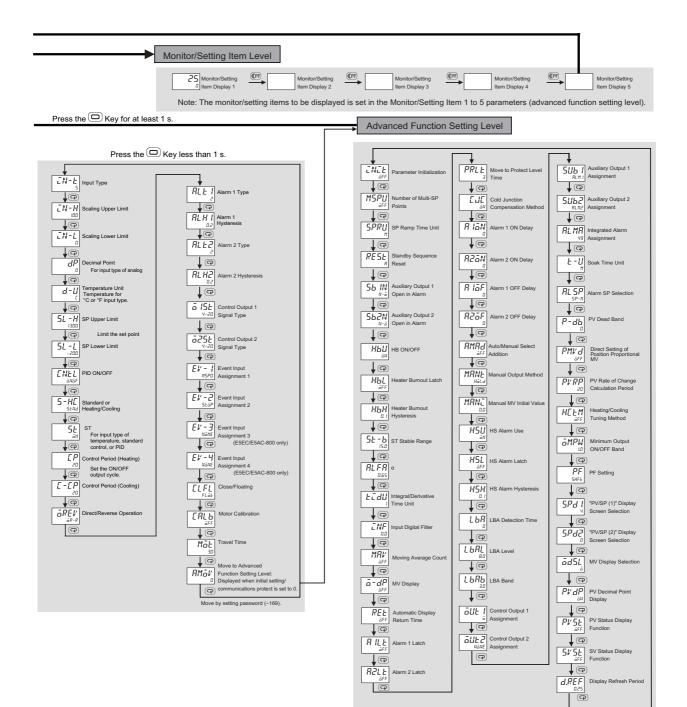
*1. To use a key procedure to move to Manual Control Level, set the Auto/Manual Select Addition parameter to ON and set the PF Setting parameter to R-M (Auto/ Manual).

*2. The No. 1 display will flash in the middle when the keys are pressed for 1 s or longer.

Error Displays (Troubleshooting)

When an error occurs, the No. 1 display or No. 2 display shows the error code. Take necessary measure according to the error code, referring the following table.


Display	Name		Meaning	Action	Operation
S.ERR	Input error	The input value exceeded the control range.* The input type is not set correctly. The sensor is disconnected or short- circuited. The sensor is not wired correctly. The sensor is not wired. * Control Range Temperature resistance thermometer or thermocouple input: SP Lower Limit - 20°C to SP Upper Limit + 20°C (SP Lower Limit - 40°F to SP Upper Limit + 40°F) ESIB input: Same as specified input range. Analog input: Scaling range -5% to 105%		Check the wiring for input to be sure it is wired correctly, not broken, and not shorted. Also check the input type. If there are no problems in the wiring or input type settings, cycle the power supply. If the display remains the same, replace the Digital Temperature Controller. If the display is restored to normal, then the probable cause is external noise affecting the control system. Check for external noise. Note: For a temperature resistance thermometer, the input is considered disconnected if the A, B, or B' line is broken.	After the error occurs and it is displayed, the alarm output will operate as if the upper limit was exceeded. It will also operate as if transfer output exceeded the upper limit. If an input error is assigned to a control output or auxiliary output, the output will turn ON when the input error occurs. The error message will appear in the display for the PV. Note: 1. The heating and cooling control outputs will turn OFF. 2. When the manual MV, MV at stop, or MV at error is set, the control output is determined by the set value.
cccc دردد	Display range exceeded	Below -1,999 Above 9,999	This is not an error. It is displayed when the control range is wider than the display range and the PV exceeds the display range. The PV is displayed for the range that is given on the left (the number without the decimal point).	-	Control continues and operation is normal. The value will appear in the display for the PV. Refer to the E5 C Digital Controllers User's Manual (Cat. No. H174) for information on the controllable range.
E 3 3 3	A/D converter error	There is an error in the internal circuits.		First, cycle the power supply. If the display remains the same, the controller must be repaired. If the display is restored to normal, then a probable cause can be external noise affecting the control system. Check for external noise.	The control outputs, auxiliary outputs, and transfer outputs turn OFF. (A current output will be approx. 0 mA and a linear voltage output will be approx. 0V.)
EIII	Memory error	There is an error in the internal memory operation.		First, cycle the power supply. If the display remains the same, the controller must be repaired. If the display is restored to normal, then a probable cause can be external noise affecting the control system. Check for external noise.	The control outputs, auxiliary outputs, and transfer outputs turn OFF. (A current output will be approx. 0 mA and a linear voltage output will be approx. 0V.)
FFFF	Overcurrent	This error is displayed when the peak current exceeds 55.0 A.		-	Control continues and operation is normal. The error message will appear for the following displays. Heater Current Value 1 Monitor Leakage Current Value 1 Monitor The No. 1 display for the following
EE I LER I	HB or HS alarm	If there is a HB or HS alarm, the No. 1 display will flash in the relevant setting level.		-	parameter flashes in Operation Level or Adjustment Level. Heater Current Value 1 Monitor Leakage Current Value 1 Monitor However, control continues and operation is normal.
	Potentiometer Input Error (Position- proportional Models Only)	 Performed. The wiring of the potentiometer is incorrect or broken. 		Check for the above errors.	Close control: The control output is OFF or the value that is set for the MV at PV Error parameter is output. Floating control: Operation will be normal.


E5CC/E5EC/E5AC-800

Operation

Parameters

The related setting items in each level are described below. If you press the Mode Key at the last setting item, the display will return to the first setting item in the same level.

E5CC/E5EC/E5AC-800

Safety Precautions

• Be sure to read the precautions for all E5CC/E5EC/E5AC-800 models in the website at: http://www.ia.omron.com/.

CAUTION Λ

Do not touch the terminals while power is being supplied.

Doing so may occasionally result in minor injury due to electric shock.

Electric shock, fire, or malfunction may occasionally occur. Do not allow metal objects, conductors, cuttings from installation work, or moisture to enter the Digital Temperature Controller or the Setup Tool

port or ports. Attach the cover to the front-panel Setup Tool port whenever you are not using it to prevent foreign objects from entering the port.

Do not use the Digital Temperature Controller where subject to flammable or explosive gas. Otherwise, minor injury from explosion may occasionally occur.

Not doing so may occasionally result in fire. Do not allow dirt or other foreign objects to enter the Setup Tool port or ports, or between the pins on the connectors on the Setup Tool cable.

Never disassemble, modify, or repair the product or touch any of the internal parts. Minor electric shock, fire, or malfunction may occasionally occur.

CAUTION - Risk of Fire and Electric Shock

- a. This product is UL recognised as Open Type Process Control Equipment. It must be mounted in an enclosure that does not allow fire to escape externally.
- b. More than one disconnect switch may be required to deenergize the equipment before servicing the product.
- Signal inputs are SELV, limited energy. *1 c.
- Caution: To reduce the risk of fire or electric shock, do not d. interconnect the outputs of different Class 2 circuits. *2

If the output relays are used past their life expectancy, contact fusing or burning may occasionally occur. Always consider the application conditions and use the output relays within their rated load and electrical life expectancy. The life expectancy of output relays varies considerably with the output load and switching conditions.

Tighten the terminal screws to the rated torque of between 0.43 and 0.58 N•m.

Loose screws may occasionally result in fire.

Set the parameters of the product so that they are suitable for the system being controlled. If they are not suitable, unexpected operation may occasionally result in property damage or accidents.

A malfunction in the product may occasionally make control operations impossible or prevent alarm outputs, resulting in property damage. To maintain safety in the event of malfunction of the

product, take appropriate safety measures, such as installing a monitoring device on a separate line.

- An SELV circuit is one separated from the power supply with double *1. insulation or reinforced insulation, that does not exceed 30 V r.m.s. and 42.4 V peak or 60 VDC.
- *2. A class 2 power supply is one tested and certified by UL as having the current and voltage of the secondary output restricted to specific levels.

Precautions for Safe Use

Be sure to observe the following precautions to prevent malfunction or adverse affects on the performance or functionality of the product. Not doing so may occasionally result in faulty operation.

- 1. This product is specifically designed for indoor use only.
 - Do not use this product in the following places:
 - Places directly subject to heat radiated from heating equipment.
 - Places subject to splashing liquid or oil atmosphere.
 - Places subject to direct sunlight.
 - Places subject to dust or corrosive gas (in particular, sulfide gas and ammonia gas).
 - · Places subject to intense temperature change.
 - Places subject to icing and condensation.
 - · Places subject to vibration and large shocks.
- 2. Use and store the product within the rated ambient temperature and humidity.

Gang-mounting two or more Digital Temperature Controllers, or mounting Digital Temperature Controllers above each other may cause heat to build up inside the Digital Temperature Controllers, which will shorten their service life. In such a case, use forced cooling by fans or other means of air ventilation to cool down the Digital Temperature Controllers.

3. To allow heat to escape, do not block the area around the Digital Temperature Controller.

Do not block the ventilation holes on the Digital Temperature Controller.

- **4.** Be sure to wire properly with correct polarity of terminals.
- 5. Use the specified size of crimp terminals for wiring (M3, width of 5.8 mm or less). For open-wired connections, use stranded or solid copper wires with a gauge of AWG24 to AWG18 (equal to a crosssectional area of 0.205 to 0.823 mm²). (The stripping length is 6 to 8 mm.) Up to two wires of the same size and type or two crimp terminals can be connected to one terminal. Do not connect more than two wires or more than two crimp terminals to the same terminal.
- 6. Do not wire the terminals that are not used.
- 7. To avoid inductive noise, keep the wiring for the product's terminal block away from power cables carry high voltages or large currents. Also, do not wire power lines together with or parallel to product wiring. Using shielded cables and using separate conduits or ducts is recommended.

Attach a surge suppressor or noise filter to peripheral devices that generate noise (in particular, motors, transformers, solenoids, magnetic coils, or other equipment that have an inductance component).

When a noise filter is used at the power supply, first check the voltage or current, and attach the noise filter as close as possible to the product.

Allow as much space as possible between the product and devices that generate powerful high frequencies (high-frequency welders, high-frequency sewing machines, etc.) or surge.

- 8. Use this product within the rated load and power supply.
- 9. Make sure that the rated voltage is attained within two seconds of turning ON the power using a switch or relay contact. If the voltage is applied gradually, the power may not be reset or output malfunctions may occur.
- **10.** Make sure that the Digital Temperature Controller has 30 minutes or more to warm up after turning ON the power before starting actual control operations to ensure the correct temperature display.
- 11. When executing self-tuning, turn ON power to the load (e.g., heater) at the same time as or before supplying power to the product. If power is turned ON to the product before turning ON power to the load, self-tuning will not be performed properly and optimum control will not be achieved.
- 12.A switch or circuit breaker must be provided close to the product. The switch or circuit breaker must be within easy reach of the operator, and must be marked as a disconnecting means for this unit.
- 13.Use a soft and dry cloth to clean the product carefully. Do not use organic solvent, such as paint thinner, benzine or alcohol to clean the product.
- **14.**Design the system (e.g., control panel) considering the 2 seconds of delay that the product's output to be set after power ON.
- 15. The output may turn OFF when you move to the initial setting level. Take this into consideration when performing control operations.

- **16.** The number of non-volatile memory write operations is limited. Therefore, use RAM write mode when frequently overwriting data, e.g., through communications.
- 17.Use suitable tools when taking the Digital Temperature Temperature Controller apart for disposal. Sharp parts inside the Digital Temperature Controller may cause injury.
- 18.Do not exceed the communications distance that is given in the specifications. Use the specified communications cable. Refer to the E5⊡C Digital Controllers User's Manual (Cat. No. H174) for information on the communications distances and cables.

Shipping Standards

The E5CC-800, E5EC-800, and E5AC-800 comply with Lloyd's standards. When applying the standards, the following installation and wiring requirements must

be met in the application.

Application Conditions

Installation Location

The E5CC-800, E5EC-800, and E5AC-800 comply with installation category ENV1 and ENV2 of Lloyd's standards. Therefore, they must be installed in a

location equipped with air conditioning. They cannot be used on the bridge or decks, or in a location subject to strong vibration.

Precautions for Correct Use

Service Life

- Use the product within the following temperature and humidity ranges:
 - Temperature:-10 to 55°C (with no icing or condensation)Humidity:25% to 85%

If the product is installed inside a control board, the ambient temperature must be kept to under 55°C, including the temperature around the product.

 The service life of electronic devices like Digital Temperature Controllers is determined not only by the number of times the relay is switched but also by the service life of internal electronic components.

Component service life is affected by the ambient temperature: the higher the temperature, the shorter the service life and, the lower the temperature, the longer the service life. Therefore, the service life can be extended by lowering the temperature of the Digital Temperature Controller.

3. When two or more Digital Temperature Controllers are mounted horizontally close to each other or vertically next to one another, the internal temperature will increase due to heat radiated by the Digital Temperature Controllers and the service life will decrease. In such a case, use forced cooling by fans or other means of air ventilation to cool down the Digital Temperature Controllers. When providing forced cooling, however, be careful not to cool down the terminals sections alone to avoid measurement errors.

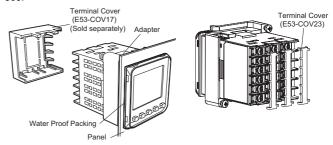
Measurement Accuracy

- 1. When extending or connecting the thermocouple lead wire, be sure to use compensating wires that match the thermocouple types.
- When extending or connecting the lead wire of the platinum resistance thermometer, be sure to use wires that have low resistance and keep the resistance of the three lead wires the same.
- **3.** Mount the product so that it is horizontally level.
- 4. If the measurement accuracy is low, check to see if input shift has been set correctly.

•Waterproofing

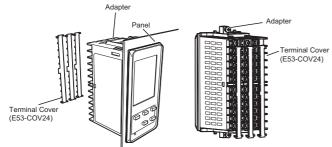
The degree of protection is as shown below. Sections without any specification on their degree of protection or those with $IP\square 0$ are not waterproof.

Front panel: IP66, Rear case: IP20, Terminal section: IP00 When waterproofing is required, insert the Waterproof Packing on the backside of the front panel. Keep the Port Cover on the front-panel Setup Tool port of the E5EC-800 securely closed. The degree of protection when the Waterproof Packing is used is IP66. To maintain an IP66 degree of protection, the Waterproof Packing and the Port Cover for the front-panel Setup Tool port must be periodically replaced because they may deteriorate, shrink, or harden depending on the operating environment. The replacement period will vary with the operating environment. Check the required period in the actual application. Use 3 years or sooner as a guideline. If the Waterproof Packing and Port Cover are not periodically replaced, waterproof performance may not be maintained. If a waterproof structure is not required, then the Waterproof Packing does not need to be installed.


Operating Precautions

- It takes approximately two seconds for the outputs to turn ON from after the power supply is turned ON. Due consideration must be given to this time when incorporating Digital Temperature Controllers into a control panel or similar device.
- Make sure that the Digital Temperature Controller has 30 minutes or more to warm up after turning ON the power before starting actual control operations to ensure the correct temperature display.
- 3. When using self-tuning, turn ON power for the load (e.g., heater) at the same time as or before supplying power to the Temperature Controller. If power is turned ON for the Temperature Controller before turning ON power for the load, self-tuning will not be performed properly and optimum control will not be achieved.
- 4. When starting operation after the Digital Temperature Controller has warmed up, turn OFF the power and then turn it ON again at the same time as turning ON power for the load. (Instead of turning the Digital Temperature Controller OFF and ON again, switching from STOP mode to RUN mode can also be used.)
- Avoid using the Controller in places near a radio, television set, or wireless installing. These devices can cause radio disturbances which adversely affect the performance of the Controller.

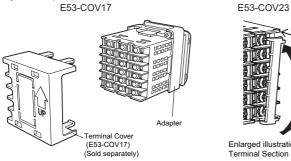
•Mounting Mounting to a Panel


E5CC-800

There are two models of Terminal Covers that you can use with the E5CC-800.

- 1. For waterproof mounting, waterproof packing must be installed on the Controller. Waterproofing is not possible when group mounting several Controllers. Waterproof packing is not necessary when there is no need for the waterproofing function.
- 2. Insert the E5CC-800 into the mounting hole in the panel.
- 3. Push the adapter from the terminals up to the panel, and
- temporarily fasten the E5CC-800.
- Tighten the two fastening screws on the adapter. Alternately tighten the two screws little by little to maintain a balance. Tighten the screws to a torque of 0.29 to 0.39 N•m.

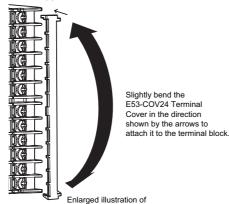
E5EC/E5AC-800



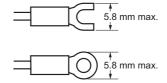
- 1. For waterproof mounting, waterproof packing must be installed on the Controller. Waterproofing is not possible when group mounting several Controllers. Waterproof packing is not necessary when there is no need for the waterproofing function.
- 2. Insert the E5EC/E5AC-800 into the mounting hole in the panel. 3. Push the adapter from the terminals up to the panel, and
- temporarily fasten the E5EC/E5AC-800.
- 4. Tighten the two fastening screws on the adapter. Alternately tighten the two screws little by little to maintain a balance. Tighten the screws to a torque of 0.29 to 0.39 N•m.

Mounting the Terminal Cover E5CC-800

Slightly bend the E53-COV23 Terminal Cover to attach it to the terminal block as shown in the following diagram. The Terminal Cover cannot be attached in the opposite direction. E53-COV17 Terminal Cover can be also attached.


Make sure that the "UP" mark is facing up, and then attach the E53-COV17 Terminal Cover to the holes on the top and bottom of the Digital Temperature Controller.

Enlarged illustration of Terminal Section


E5EC/E5AC-800

Slightly bend the E53-COV24 Terminal Cover to attach it to the terminal block as shown in the following diagram. The Terminal Cover cannot be attached in the opposite direction.

Precautions when Wiring

- · Separate input leads and power lines in order to prevent external noise
- Use a shielded, AWG24 to AWG18 (cross-sectional area of 0.205 to 0.8231 mm²) twisted-pair cable.
- Use crimp terminals when wiring the terminals.
- Use the suitable wiring material and crimp tools for crimp terminals.
- Tighten the terminal screws to a torque of 0.43 to 0.58 N•m.
- Use the following types of crimp terminals for M3 screws.

МЕМО

<u> </u>	
	МЕМО

Read and Understand this Catalog

Please read and understand this catalog before purchasing the product. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of the product in the customer's application or use of the product.

Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used.

Know and observe all prohibitions of use applicable to this product.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

Note: Do not use this document to operate the Unit.

OMRON Corporation **Industrial Automation Company** Authorized Distributor: Tokyo, JAPAN Contact: www.ia.omron.com OMRON (CHINA) CO., LTD. OMRON ASIA PACIFIC PTE. LTD. No. 438A Alexandra Road # 05-05/08(Lobby 2), Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road, Alexandra Technopark, Singapore 119967 PuDong New Area, Shanghai, 200120, China Tel: 65-6835-3011/Fax: 65-6835-2711 Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

OMRON TAIWAN ELECTRONICS INC. 6F, Home Young Budg., No.363, Fu-Shing N.Road, Taipei, Taiwan R.O.C Tel: (886) 2-2715-3331/Fax: (886) 2-2712-6712

© OMRON Corporation 2011 All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice.

Cat. No. H179-E1-04