DCS550

Manual
DCS550 Drives (20 A to 1000 A)

DCS550 Manuals

		Language						
	Public. number	E	D	I	ES	F	CN	RU
Quick Guide	3ADW000395	x	x	x	x	x		
DCS550 Tools \& Documentation CD	3ADW000377	x						
DCS550 Modules								
DCS550 Flyer	3ADW000374	x	X					
DCS550 Technical Catalogue	3ADW000378	p						
DCS550 Manual	3ADW000379	x						
DCS550 Service Manual	3ADW000399	p						
Installation according to EMC	3ADW000032	x						
Technical Guide	3ADW000163	X						
Extension Modules								
RAIO-01 Analogue IO Extension	3AFE64484567	x						
RDIO-01 Digital IO Extension	3AFE64485733	x						
Serial Communication								
RPBA-01 PROFIBUS	3AFE64504215	x						
RCAN-01 CANopen	3AFE64504231	X						
RCNA-01 ControlNet	3AFE64506005	X						
RDNA-01 DeviceNet	3AFE64504223	X						
RMBA-01 MODBUS	3AFE64498851	x						
RETA-01 Ethernet	3AFE64539736	x						
x -> existing p -> planned								
Status 05.2011								

DCS550 Drive Manuals-List_d.doc

Safety instructions

Chapter overview

This chapter contains the safety instructions you must follow when installing, operating and servicing the drive. If ignored, physical injury or death may follow, or damage may occur to the drive, the motor or driven equipment. Read the safety instructions before you work on the unit.

To which products this chapter applies

The information is valid for the whole range of the product DCS550.

Usage of warnings and notes

There are two types of safety instructions throughout this manual: warnings and notes. Warnings caution you about conditions, which can result in serious injury or death and/or damage to the equipment, and advice on how to avoid the danger. Notes draw attention to a particular condition or fact, or give information on a subject. The warning symbols are used as follows:

Dangerous voltage warning warns of high voltage, which can cause physical injury or death and/or damage to the equipment.

General danger warning warns about conditions, other than those caused by electricity, which can result in physical injury or death and/or damage to the equipment.

Electrostatic sensitive devices warning warn of electrostatic discharge, which can damage the equipment.

Installation and maintenance work

These warnings are intended for all who work on the drive, motor cable or motor. Ignoring the instructions can cause physical injury or death and/or damage to the equipment.

WARNING!

1. Only qualified electricians are allowed to install and maintain the drive!

- Never work on the drive, motor cable or motor when main power is applied. Always ensure by measuring with a multimeter (impedance at least 1 Mohm) that:

1. Voltage between drive input phases $\mathrm{U} 1, \mathrm{~V} 1$ and W 1 and the frame is close to 0 V .
2. Voltage between terminals $\mathrm{C}+$ and D - and the frame is close to 0 V .

- Do not work on the control cables when power is applied to the drive or to the external control circuits. Externally supplied control circuits may cause dangerous voltages inside the drive even when the main power on the drive is switched off.
- Do not make any insulation resistance or voltage withstand tests on the drive or drive modules.
- Isolate the motor cables from the drive when testing the insulation resistance or voltage withstand of the cables or the motor.
- When reconnecting the motor cable, always check that the C+ and D- cables are connected with the proper terminal.

Note:

- The motor cable terminals on the drive are at a dangerously high voltage when the main power is on, regardless of whether the motor is running or not.
- Depending on the external wiring, dangerous voltages ($115 \mathrm{~V}, 220 \mathrm{~V}$ or 230 V) may be present on the relay outputs of the drive system (e.g. RDIO).
- DCS550 with enclosure extension: Before working on the drive, isolate the whole drive system from the supply.

Grounding

These instructions are intended for all who are responsible for the grounding of the drive. Incorrect grounding can cause physical injury, death and/or equipment malfunction and increase electromagnetic interference.

WARNING!

- Ground the drive, motor and adjoining equipment to ensure personnel safety in all circumstances, and to reduce electromagnetic emission and pick-up.
- Make sure that grounding conductors are adequately sized and marked as required by safety regulations.
- In a multiple-drive installation, connect each drive separately to protective earth (PE © -).
- Minimize EMC emission and make a 360° high frequency grounding (e.g. conductive sleeves) of screened cable entries at the cabinet lead-through plate.

Note:

- Power cable shields are suitable as equipment grounding conductors only when adequately sized to meet safety regulations.
- As the normal leakage current of the drive is higher than $3.5 \mathrm{~mA}_{A C}$ or $10 \mathrm{~mA}_{\mathrm{DC}}$ (stated by EN $50178,5.2 .11 .1$), a fixed protective earth connection is required.

Printed circuit boards and fiber optic cables
These instructions are intended for all who handle the circuit boards and fiber optic cables. Ignoring the following instructions can cause damage to the equipment.

WARNING!

The printed circuit boards contain components sensitive to electrostatic discharge. Wear a grounding wristband when handling the boards. Do not touch the boards unnecessarily.
Use grounding strip:

ABB order no.: 3ADV050035P0001

WARNING!

Handle the fiber optic cables with care. When unplugging optic cables, always grab the connector, not the cable itself. Do not touch the ends of the fibers with bare hands, as the fiber is extremely sensitive to dirt. The minimum allowed bend radius is 35 mm (1.38 in .).

Safety instructions

Mechanical installation

These notes are intended for all who install the drive. Handle the unit carefully to avoid damage and injury.

WARNING!

- DCS550 size F4: The drive is heavy. Do not lift it alone. Do not lift the unit by the front cover. Place it only on its back.
- Make sure that dust from drilling does not enter the drive when installing. Electrically conductive dust inside the unit may cause damage or lead to malfunction.
- Ensure sufficient cooling.
- Do not fasten the drive by riveting or welding.

Operation

These warnings are intended for all who plan the operation of the drive or operate the drive. Ignoring the instructions can cause physical injury or death and/or damage to the equipment.

WARNING!

- Before adjusting the drive and putting it into service, make sure that the motor and all driven equipment are suitable for operation throughout the speed range provided by the drive. The drive can be adjusted to operate the motor at speeds above and below the base speed.
- Do not control the motor with the disconnecting device (disconnecting mains); instead, use the control panel keys and , or commands via the I/O board of the drive.
- Mains connection

You can use a disconnect switch (with fuses) to disconnect the electrical components of the drive from the mains for installation and maintenance work. The type of disconnect switch used must be as per EN 60947-3, Class B, so as to comply with EU regulations, or a circuitbreaker type which switches off the load circuit by means of an auxiliary contact causing the breaker's main contacts to open. The mains disconnect must be locked in its "OPEN" position during any installation and maintenance work.

- EMERGENCY STOP buttons must be installed at each control desk and at all other control panels requiring an emergency stop function. Pressing the STOP button on the control panel of the drive will neither cause an emergency stop of the motor, nor will the drive be disconnected from any dangerous potential.
To avoid unintentional operating states, or to shut the unit down in case of any imminent danger according to the standards in the safety instructions it is not sufficient to merely shut down the drive via signals "RUN", "drive OFF" or "Emergency Stop" respectively "control panel" or "PC tool".
- Intended use

The operating instructions cannot take into consideration every possible case of configuration, operation or maintenance. Thus, they mainly give such advice only, which is required by qualified personnel for normal operation of the machines and devices in industrial installations.
If in special cases the electrical machines and devices are intended for use in non-industrial installations - which may require stricter safety regulations (e.g. protection against contact by children or similar) - these additional safety measures for the installation must be provided by the customer during assembly.

Note:

- When the control location is not set to Local (L not shown in the status row of the display), the stop key on the control panel will not stop the drive. To stop the drive using the control panel, press the LOC/REM key and then the stop key

Table of contents

DCS550 Manuals 2
Safety instructions 3
Table of contents 6
Introduction 8
The DCS550 9
General 9
Overview Main circuit and control. 11
Environmental Conditions 12
Type code 13
Voltage ratings 13
Current ratings 14
Dimensions and weights 16
Mechanical installation 19
Cabinet installation 20
Planning the electrical installation 21
Drive connection and wiring example 22
Installation components 24
Cabling 29
(6) Cooling fans 32
Electrical installation 33
Power connections 34
Drive interfaces 36
Installation checklist. 38
Electronic board details. 39
Terminal locations 39
Table of used boards 40
Control board SDCS-CON-F 41
Power Interface board SDCS-PIN-F 44
OnBoard field exciters SDCS-BAB-F01 and SDCS-BAB-F02 46
Accessories 49
(1) Line reactors (L1) 49
(2) Semiconductor fuses (F1) 55
(3) EMC filters (E1) 57
(4) Auxiliary transformer (T2) for converter electronics and fan 57
Start-up 58
Commissioning 58
Macros 62
Firmware description 73
Start / stop sequences 73
Excitation 74
Table of contents
DC-breaker 76
Dynamic braking 77
Digital I/O configuration 79
Analog I/O configuration 83
Serial field bus communication. 87
CANopen communication with fieldbus adapter RCAN-01 87
ControlNet communication with fieldbus adapter RCNA-01 91
DeviceNet communication with fieldbus adapter RDNA-01 94
Ethernet/IP communication with fieldbus adapter RETA-01 97
Modbus (RTU) communication with fieldbus adapter RMBA-01 100
Modbus/TCP communication with fieldbus adapter RETA-01 102
Profibus communication with fieldbus adapter RPBA-01 103
ProfiNet communication with fieldbus adapter RETA-02 107
Switch on sequence 108
Data set table 108
AP (Adaptive Program). 109
What is AP? 109
DWL AP 113
Function blocks 118
Winder 130
Winder blocks 130
Winder macros 136
Winder commissioning 145
Signal and parameter list 148
Parameter group list 149
Signals 151
Parameters 176
DCS Control Panel 264
Fault tracing 270
Converter protection 270
Motor protection 273
Display of status, fault messages and error codes 279
Fault signals (F). 280
Alarm signals (A) 288
Notices 295
Appendix A: Quick start-up diagrams 296
Drive configuration with reduced components 296
I/O connections 298
Appendix B: Firmware structure diagrams 299
Appendix C: Index of signals and parameters 303

Introduction

Chapter overview

This chapter describes the purpose, contents and the intended use of this manual.

Before You Start

The purpose of this manual is to provide you with the information necessary to control and program the drive. Study carefully the Safety instructions at the beginning of this manual before attempting any work on or with the drive. Read this manual before starting-up the drive.

Note:

This manual describes the standard DCS550 firmware.

What this manual contains

The Safety instructions are at the beginning of this manual.
Introduction, the chapter you are currently reading, introduces you to this manual.
The DCS550, this chapter describes the basic properties of the DCS550.
Mechanical installation, this chapter describes the mechanical installation of the DCS550.
Planning the electrical installation, this chapter describes how to plan the electrical installation of the DCS550.
Electrical installation, this chapter describes the electrical installation of the DCS550.
Electronic board details, this chapter describes the electronics of the DCS550.
Accessories, this chapter describes the accessories for the DCS550.
Start-up, this chapter describes the basic start-up procedure of the DCS550.
Firmware description, this chapter describes how to control the DCS550 with standard firmware.
Serial field bus communication, this chapter describes the communication capabilities of the DCS550.
$A P$ (Adaptive Program), this chapter describes the basics of AP and instructs how to build an application.
Winder, this chapter describes the winder and instructs how to use the winder blocks of the DCS550.
Signal and parameter list, this chapter contains all signals and parameters.
DCS Control Panel, this chapter describes the handling of the DCS Control Panel.
Fault tracing, this chapter describes the protections and fault tracing of the drive.
Appendix A: Quick start-up diagrams
Appendix B: Firmware structure diagrams
Appendix C: Index of signal and parameters

The DCS550

Chapter overview

This chapter describes the basic properties of the DCS550.

General

ABB Drive Service

In order to offer the same after sales service to our customer around the world, ABB has created the DRIVE SERVICE CONCEPT. ABB's after sales service is globally consistent due to common targets, rules and the way of operation. This means for our customers simply visit the ABB drive service homepage at www.abb.com/drivesservices.

DC drives worldwide Service Network

Country	Local ABB Service	Town	Service Phone No.
Argentina	Asea Brown Boveri S.A.	BUENOS AIRES	+54 (0) 12295500
Australia	ABB	NOTTING HILL	+61 (0) 385440000
Austria	ABB AG	WIEN	+431601090
Belgium	ABB N.V.	ZAVENTEM	$\begin{aligned} & +3227186486 \\ & +3227186500-24 h \text { service } \end{aligned}$
Brazil	ABB Ltda.	OSASCO	+55 (0) 1170849111
Canada	ABB Inc.	SAINT-LAURENT	+1800 8657628
China	ABB China Ltd	BEIJING	+86 $4008108885-24 \mathrm{~h}$ service
Czech Republic	ABB S.R.O.	PRAHA	+42 0234322360
Finland	ABB Oy Service	KUUSANKOSKI	+35 810225100
Finland	ABB Oy Product Service	HELSINKI	+35 810222000
Finland	ABB Oy Service	NOKIA	+3581022 5140
France	ABB Automation ABB Process Industry	MONTLUEL from abroad France	$\begin{aligned} & +33134402581 \\ & +0810020000 \\ & \hline \end{aligned}$
Germany	ABB Process Industries	MANNHEIM	+49 1805222580
Greece	ABB SA	METAMORPHOSSIS	+30 6936584574
Ireland	ABB Ireland Ltd.	TALLAGHT	+35 314057300
Italy	ABB	MILAN	+39 0290347391
Korea, Republic	ABB Ltd., Korea	CHONAN	+82 (0) 4152922
Malaysia	ABB Malaysia Sdn. Bhd.	KUALA LUMPUR	+60 356284265
Mexico	ABB Sistemas S.A. DE C.V.	TLALNEPANTLA	+5253281400
Netherlands	ABB B.V.	ROTTERDAM	+31104078866
New Zealand	ABB Service Itd	AUCKLAND	+6492766016
Poland	ABB Centrum IT Sp.zo.o	$\begin{aligned} & \text { WROCLAW } \\ & \text { LODZ } \end{aligned}$	$\begin{aligned} & +48426134962 \\ & +4842299391395 \\ & \hline \end{aligned}$
Russia	ABB Automation LLC	MOSCOW	+74 95960
Switzerland	ABB AG	DÄTTWIL	+41585868786
Singapore	ABB Industry Pte Ltd	SINGAPORE	+6567 765711
Slovakia	ABB Elektro s.r.o.	BANSKA BYSTRICA	+42 1905581278
South Africa	ABB South Africa (Pty) Lt	JOHANNESBURG	+27116172000
Spain	ABB Automation Products	BARCELONA	+34937287300
Taiwan	ABB Ltd.	TAIPEI 105	+88 6225776090
Thailand	ABB Limited	SAMUTPRAKARN	+6627 093346
Turkey	ABB Elektirk Sanayi A.S	ISTANBUL	+902 16365290
USA	ABB Industrial Products	NEW BERLIN	$\begin{aligned} & +12627853200 \\ & +12624357365 \end{aligned}$
Venezuela	ABB S.A.	C R C S	+58 (0) $22382411 / 12$

DCS550 Tools CD

Every DCS550 comes together with a DCS550 Tools CD. This CD contains the documentation and PC tools for the DCS550.

Documentation

The structure of the documentation is according to the following system:

- The DCS550 Technical Catalogue contains information to engineer complete DC drive systems.
- The DCS550 Manual contains information about

1. module dimensions, electronic boards, fans and auxiliary parts,
2. mechanical and electrical installation,
3. firmware and parameter settings
4. start-up and maintenance of the entire drive
5. fault, alarm codes and information for trouble shooting.

- The DCS800 / DCS550 Service Manual contains information for maintenance and repair of the converters.
- Additional information about technical accessories (e.g. hardware extension or fieldbus interfaces) are handled by separate manuals. See chapter DCS550 Manuals.

DCS550 PC tools

After inserting the DCS550 CD all programs and documentation necessary to work with the DCS550 can be installed. This includes:

- DCS550 documentation,
- DriveWindow Light for parameterization, commissioning and service,
- plug ins for DriveWindow Light (DWL AP and the commissioning wizard)
- Hitachi FDT 2.2 for firmware download and
- DCS550 firmware.

Overview Main circuit and control

DCS550 converter units F1 to F4 for 525 V with OnBoard field exciters.

Environmental Conditions

The technical data contain the technical specifications of the drive, e.g. the ratings, sizes and technical requirements, provisions for fulfilling the requirements for CE and other markings and warranty policy.

System connection

Voltage, 3-phase:
Voltage deviation:
Rated frequency:
Static frequency deviation:
Dynamic: frequency range:
df/dt:
Note:
Special consideration must be taken for voltage deviation in regenerative mode.

Degree of protection

Converter modules and options (line chokes, fuses,
field exciters, etc.):
Paint finish
Converter modules:

230 to 525 V acc. to IEC 60038 ± 10 \% continuous; ± 15 \% shorttime (0.5 to 30 cycles)
50 Hz or 60 Hz
$50 \mathrm{~Hz} \pm 2$ \%; $60 \mathrm{~Hz} \pm 2$ \%
$50 \mathrm{~Hz}: \pm 5 \mathrm{~Hz} ; 60 \mathrm{~Hz}: \pm 5 \mathrm{~Hz}$ 17 \% / s

Effect of the site elevation above sea level on the converter's load capacity:

Environmental limit values

Permissible cooling air temperature

- with rated DC current (forced ventilation):

0 to $+40^{\circ} \mathrm{C}$

- with different DC current see
figure below:
- for options:

Relative humidity (at $5 \ldots+40^{\circ} \mathrm{C}$):
Relative humidity (at $0 \ldots+5^{\circ} \mathrm{C}$):
Change of the ambient temp.
Storage temperature:
Transport temperature
Pollution degree (IEC 60664-1,
IEC 60439-1):
Vibration class:
Site elevation
<1000 m above mean sea level:
>1000 m above mean sea level:
+30 to $+55^{\circ} \mathrm{C}$
0 to $+40^{\circ} \mathrm{C}$
5 to 95%, no condensation 5 to 50%, no condensation
$<0.5^{\circ} \mathrm{C}$ / minute
-40 to $+55^{\circ} \mathrm{C}$
-40 to $+70^{\circ} \mathrm{C}$
2
3M3
100%, without current reduction with current reduction, see figure below
Effect of the ambient temperature on the converter module load capacity:

Size	Sound pressure level LP (1 m distance)	Vibration	Shock	Transport in original Package	Short circuit withstand rating The DCS550 is suitable for use in a circuit capable of delivering not more than:
F1	55 dBA	$1.5 \mathrm{~mm}, 2 \ldots 9 \mathrm{~Hz}$	$7 \mathrm{~g} / 22 \mathrm{~ms}$	1.2 m	65 kA rms symmetrical ampere at a maximum of $600 \mathrm{~V}_{\mathrm{AC}}$
F2	55 dBA	$0.5 \mathrm{~g}, 9 \ldots 200 \mathrm{~Hz}$			
F3	60 dBA				
F4	$66 \ldots 70 \mathrm{dBA}$, depending on fan				

Regulatory Compliance

The converter modules are designed for use in industrial environments. In EEA countries, the components fulfill the requirements of the EU directives, see table below.

European Union Directive	Manufacturer's Assurance	Harmonized Standards
Machinery Directive	Declaration of Incorporation	
$98 / 37 / E E C$	[IEC 60204-1]	
$93 / 68 / E E C$		
Low Voltage Directive		EN 61800-1
$73 / 23 / E E C$	[IEC 61800-1]	
$93 / 68 / E E C$	EN 60204-1	
	[IEC 60204-1]	
EMC Directive		

The DCS550

89/336/EEC	Declaration of Conformity (If all installation instructions concerning cable selection, cabling and EMC filters or dedicated transformer are followed.)	EN 61800-3 [IEC 61800-3]

North American Standards

In North America, the system components fulfill the requirements of the table below.

Rated supply voltage	Standards
up to $525 \mathrm{~V}_{\mathrm{AC}}$	See UL Listing $w w w$. ul.com / certificate no. E196914
	Approval: cULus The spacings in the modules were evaluated to table 36.1 of
	UL 508 C. Spacings also comply with table 6 and table 40 of C22.2 No. 14-05.
	or on request

Type code

The type code contains information on the specifications and configuration of the drive. Description see below: The drive's basic type code: DCS550-AAX-YYYY-ZZ-BB

Product family:	DCS550		
Type:	AA	= S0	Standard converter modules IP00
Bridge type:	X	= 1	Single bridge (2-Q)
		$=2$	2 anti parallel bridges (4-Q)
Module type:	YYYY	$=$	Rated DC current
Rated AC voltage:	ZZ	$=05$	$230 \mathrm{~V}_{\text {AC }}-525 \mathrm{~V}_{\text {AC }}$
Fan voltage:	BB	$=00$	Standard F1: no fan $20 \mathrm{~A} / 25 \mathrm{~A}$ $24 \mathrm{~V}_{\mathrm{DC}}$ internal $45 \mathrm{~A}-100 \mathrm{~A}$ F2, F3: $115 \mathrm{~V}_{\mathrm{AC}} / 230 \mathrm{~V}_{\mathrm{AC}}$; single phase F4: $230 \mathrm{~V}_{\mathrm{AC}}$; single phase

Voltage ratings

The maximum available armature voltages have been calculated using the following assumptions:

- $\mathrm{U}_{\mathrm{VN}}=$ rated mains voltage, 3-phase,
- Voltage tolerance $\pm 10 \%$,
- Internal voltage drop approximately 1 \%

If a deviation or a voltage drop has to be taken into account in compliance with IEC and VDE standards, the output voltage and / or the output current must be reduced.

Mains voltage	Maximum DC voltage		Ideal DC voltage	DC voltage class
$\mathrm{U}_{\mathrm{VN}}\left[\mathrm{V}_{\mathrm{AC}}\right]$	$\mathrm{U}_{\mathrm{d} \text { max 2-Q }}\left[\mathrm{V}_{\mathrm{DC}}\right]$	$\mathrm{U}_{\mathrm{d} \max 4-\mathrm{Q}}\left[\mathrm{V}_{\mathrm{DC}}\right]$	$\mathrm{U}_{\mathrm{do}}\left[\mathrm{V}_{\mathrm{DC}}\right]$	
230	265	240	310	05
380	440	395	510	05
400	465	415	540	05
415	480	430	560	05
440	510	455	590	05
460	530	480	620	05
480	555	500	640	05
500	580	520	670	05
525	610	545	700	05

The maximum available field voltage can be calculated using following formula:
$U_{F} \leq 1.35 * U_{V N} *\left(\frac{100 \% * T O L}{100 \%}\right)$, with:
$\mathrm{U}_{\mathrm{F}}=$ field voltage,
$U_{\mathrm{VN}}=$ mains voltage and
TOL = tolerance of the mains voltage in \%.

Current ratings

Size	$\begin{gathered} \hline \mathrm{I}_{\mathrm{A}}, 2-\mathrm{Q} \\ {[\mathrm{~A}]} \end{gathered}$	$P_{\text {out }}$ [kW] (1)	$\begin{gathered} \mathrm{I}_{\mathrm{A}}, 4-\mathrm{Q} \\ {[\mathrm{~A}]} \\ \hline \end{gathered}$	$P_{\text {out }}$ [kW] © 1	Mains [V]	$\begin{gathered} \mathrm{I}_{\mathrm{F}} \\ {[\mathrm{~A}]} \end{gathered}$	$\begin{aligned} & \mathbf{P}_{\text {loss }} \\ & {[\mathrm{kW}]} \end{aligned}$	$\begin{gathered} \text { Air flow } \\ {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \end{gathered}$
F1	20	12	25	13	$\begin{gathered} 230-525 \\ -15 \% /+10 \% \end{gathered}$	1-12	0.11	no fan
	45	26	50	26			0.17	150
	65	38	75	39			0.22	150
	90	52	100	52			0.28	150
F2	135	79	150	78		1-18	0.38	300
	180	104	200	104			0.56	300
	225	131	250	131			0.73	300
	270	157	300	157			0.88	300
F3	315	183	350	182		2-25	0.91	300
	405	235	450	234			1.12	300
	470	280	520	276			1.32	500
F4	610	354	680	354		2-35	1.76	950
	740	429	820	426			2.14	950
	900 (2)	522	1000 (3)	520			2.68	1900

(1) Ratings for $500 \mathrm{~V}_{\mathrm{AC}}-10 \%$
(2) $900 \mathrm{~A}_{D C}$ for $35^{\circ} \mathrm{C}$ and $850 \mathrm{~A}_{D C}$ for $40^{\circ} \mathrm{C}$ ambient temperature
(3) $1000 \mathrm{~A}_{D C}$ for $35^{\circ} \mathrm{C}$ and $950 \mathrm{~A}_{D C}$ for $40^{\circ} \mathrm{C}$ ambient temperature

Current ratings - IEC non regenerative

See the current ratings including several standard duty cycles for the DCS550 with 50 Hz and 60 Hz supplies below. The current ratings are based on an ambient temperature of maximum $40^{\circ} \mathrm{C}$ and an elevation of maximum 1000 m above mean sea level:

Converter type (2-Q)	Idcı	ldc. ${ }^{\text {I }}$		IDC III		ldciv		Size	Internal field
	continuous	$\begin{aligned} & 100 \% \\ & 15 \mathrm{~min} \end{aligned}$	$\begin{gathered} 150 \text { \% } \\ 60 \mathrm{~s} \end{gathered}$	$\begin{aligned} & 100 \% \\ & 15 \mathrm{~min} \end{aligned}$	$\begin{aligned} & \hline 150 \text { \% } \\ & 120 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 100 \% \\ & 15 \mathrm{~min} \end{aligned}$	$\begin{gathered} 200 \text { \% } \\ 10 \mathrm{~s} \end{gathered}$		
525 V	[A]	[A]		[A]		[A]			
DCS550-S01-0020-05	20	16	24	16	24	15	30	F1	1-12A
DCS550-S01-0045-05	45	36	54	35	52	31	62		
DCS550-S01-0065-05	65	54	81	52	78	49	98		
DCS550-S01-0090-05	90	76	114	74	111	73	146		
DCS550-S01-0135-05	135	105	157	100	150	93	186	F2	1-18A
DCS550-S01-0180-05	180	130	195	125	187	110	220		
DCS550-S01-0225-05	225	170	255	165	247	148	296		
DCS550-S01-0270-05	270	200	300	195	292	180	360		
DCS550-S01-0315-05	315	240	360	235	352	215	430	F3	2-25A
DCS550-S01-0405-05	405	310	465	300	450	270	540		
DCS550-S01-0470-05	470	350	525	340	510	310	620		
DCS550-S01-0610-05	610	455	682	435	652	425	850	F4	2-35A
DCS550-S01-0740-05	740	570	855	540	810	525	1050		
DCS550-S01-0900-05	900	680	1020	650	975	615	1230		

Note:

AC current $I_{A C}=0.82^{*} I_{D C}$

The DCS550

Current ratings - IEC regenerative

Converter type (4-Q)	ldCI	Idc II		IDC III		ldciv		Size	Internal field current
	continuous	$\begin{aligned} & 100 \% \\ & 15 \mathrm{~min} \end{aligned}$	$\begin{gathered} 150 \text { \% } \\ 60 \text { s } \end{gathered}$	$\begin{aligned} & 100 \% \\ & 15 \mathrm{~min} \end{aligned}$	$\begin{aligned} & 150 \text { \% } \\ & 120 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 100 \% \\ & 15 \mathrm{~min} \end{aligned}$	$\begin{gathered} 200 \text { \% } \\ 10 \mathrm{~s} \end{gathered}$		
525 V	[A]	[A]		[A]		[A]			
DCS550-S02-0025-05	25	22	33	21	31	20	40	F1	1-12 A
DCS550-S02-0050-05	50	38	57	37	55	33	66		
DCS550-S02-0075-05	75	60	90	59	88	54	108		
DCS550-S02-0100-05	100	85	127	83	124	80	160		
DCS550-S02-0150-05	150	114	171	110	165	100	200	F2	1-18A
DCS550-S02-0200-05	200	145	217	140	210	115	230		
DCS550-S02-0250-05	250	185	277	180	270	165	330		
DCS550-S02-0300-05	300	225	337	220	330	200	400		
DCS550-S02-0350-05	350	275	412	265	397	245	490	F3	2-25 A
DCS550-S02-0450-05	450	350	525	340	510	310	620		
DCS550-S02-0520-05	520	400	600	380	570	350	700		
DCS550-S02-0680-05	680	525	787	510	765	475	950	F4	2-35 A
DCS550-S02-0820-05	820	630	945	610	915	565	1130		
DCS550-S02-1000-05	1000	750	1125	725	1087	660	1320		

Note:

AC current $I_{A C}=0.82^{*} l_{D C}$

Sizing and standard duty cycles:

The ratings apply at ambient temperature of $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$.

Dimensions and weights

Size	$\mathbf{h}{ }^{*} \mathbf{w}^{*} \mathbf{d}$ [mm]	$\mathbf{h}{ }^{*}$ w ${ }^{*}$ d [inch]	weight [kg]	weight [lbs]
F1	$370^{*} 270^{*} 220$	$14.56 \times 10.65 \times 8.70$	11	24
F2	$370^{*} 270^{*} 270$	$14.56 \times 10.65 \times 10.65$	16	35
F3	$459^{*} 270 * 310$	$18.07 \times 10.65 \times 12.25$	25	55
F4	$644^{*} 270 * 345$	$25.35 \times 10.65 \times 13.60$	38	84

See the dimensional drawings of the DCS550 below. The dimensions are in millimeters.

Size F1:

DCS550-S01-0020
DCS550-S01-0045
DCS550-S01-0065
DCS550-S01-0090
DCS550-S02-0025
DCS550-S02-0050
DCS550-S02-0075
DCS550-S02-0100

Size F2:

DCS550-S01-0135
DCS550-S01-0180
DCS550-S01-0225
DCS550-S01-0270
DCS550-S02-0150
DCS550-S02-0200
DCS550-S02-0250
DCS550-S02-0300

Size F3:
DCS550-S01-0315
DCS550-S01-0405
DCS550-S01-0470
DCS550-S02-0350
DCS550-S02-0450
DCS550-S02-0520

Size F4:

DCS550-S01-0610
DCS550-S01-0740
DCS550-S01-0900
DCS550-S02-0680
DCS550-S02-0820
DCS550-S02-1000

Size F1-F3:

Size F4:

Field-, fan terminals and cooling air duct sizes

Top view, F1 45 A - 100A

Top view, F2 135 A - 300A

Top view, F3 315 A - 450A

Top view, F4 610 A - 820A

Top view, F3 470 A - 520A

Top view, F4 900 A - 1000A

Mechanical installation

Chapter overview

This chapter describes the mechanical installation of the DCS550.

Unpacking the unit

- Open the box,
- take out shock dampers,
- separate manual and accessories.

Attention:

Do not lift the drive by the cover!

Delivery check

Check that there are no signs of damage. Before attempting installation and operation, check the information on the nameplate of the converter module to verify that the unit is of the correct type. The label includes an IEC rating, cULus and CE markings, a type code and a serial number, which allow individual identification of each unit. The remaining digits complete the serial number so that there are no two units with the same serial number. See an example nameplate below.

Before installation

Install the drive in an upright position with the cooling section facing a wall. Check the installation site according to the requirements below. Refer to chapter Dimensions for frame details.

Requirements for the installation site

See chapter Technical data for the allowed operation conditions of the drive.
Wall
The wall should be as close to vertical as possible, of non-flammable material and strong enough to carry the weight of the unit. Check that there is nothing on the wall to inhibit the installation.
Floor
The floor or material below the installation must be non-flammable.
Free space around the unit
Around the unit free space is required to enable cooling airflow, service and maintenance see chapter Dimensions.

Cabinet installation

The required distance between parallel units is five millimeters (0.2 in .) in installations without front cover. The cooling air entering the unit must not exceed $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$.

Preventing cooling air recirculation

Unit above another
Prevent air recirculation inside and outside the cabinet

Lead the exhaust cooling air away from the unit above. Distances see chapter Dimensions.

Planning the electrical installation

Chapter overview

This chapter contains the instructions that must be followed when selecting the motor, cables, protections, cable routing and way of operation for the drive system. Always follow local regulations. This chapter applies to all DCS550 converter modules.

Attention:

If the recommendations given by ABB are not followed, the drive may experience problems that the warranty does not cover. See also Technical Guide.

Drive connection and wiring example

The drive configuration with a reduced set of components gives the same control performance, but a lower degree of monitoring functions.

Planning the electrical installation

The drive configuration with a full set of components offers the highest degree of monitoring functions.

Installation components

(1) Line reactors (L1)

When thyristor power converters operate, the line voltage is short-circuited during commutation from one thyristor to the next. This operation causes voltage dips in the mains PCC (point of common coupling). For the connection of a power converter system to the mains, one of the following configurations applies:

Configuration A

When using the power converter, a minimum of impedance is required to ensure proper performance of the snubber circuit. Use a line reactor to meet this minimum impedance requirement. The value must therefore not drop below $1 \% u_{k}$ (relative impedance voltage). It should not exceed $10 \% u_{k}$, due to considerable voltage drops at converter output.

Configuration B

If special requirements have to be met at the PCC (standards like EN 61 800-3, DC and AC drives at the same line, etc), different criteria must be applied for selecting a line reactor. These requirements are often defined as a voltage dip in percent of the nominal supply voltage. The combined impedance of $Z_{\text {Line }}$ and $Z_{\mathrm{L} 1}$ constitute the total series impedance of the installation. The ratio between the line impedance and the line reactor impedance determines the voltage dip at the connecting point. In such cases, line chokes with an impedance around 4% are often used. Example calculation with u_{k} Line $=1 \%$ and $u_{k} L_{1}=4 \%$:
Voltage dip $=Z_{\text {Line }} /\left(Z_{\text {Line }}+Z_{\mathrm{L} 1}\right)=20 \%$. Detailed calculations see Technical Guide.

Line

Configuration C
If an isolation transformer is used, it is possible to comply with certain connecting conditions per Configuration B without using an additional line reactor. The condition described in Configuration A will then likewise be satisfied, since the u_{k} is $>1 \%$.

Configuration C1

When supplying 2 or more converters by one transformer use configuration A or B. One can see that each drive needs its own line reactor.

Line Configuration D

In the case of high power converters, frequently a transformer is used for voltage matching. When using an autotransformer for this purpose, additionally install a commutating reactor, because the u_{k} of commonly used autotransformers is too small.

Semiconductor fuses (F1)

Aspects of fusing for the armature circuit of DC drives

Unit configuration

Protection elements such as fuses or overcurrent trip circuits are required in all cases to protect against further damage. In some configurations, this will entail the following questions:

1. Where to place which protective element?
2. In the event of what faults will the element in question provide protection against damage?

(3) EMC filters (E1)

Filter in a grounded line (earthed TN or TT network)

The filters are suitable for grounded lines only, for example in public European 400 V lines. According to EN 61800-3 filters are not needed in insulated industrial networks with own supply transformers. Furthermore, they could cause safety risks in such floating lines (IT networks). According to EN 61800-3 filters are not needed in industrial zone (Second Environment) for DCS550 drives above $100 \mathrm{~A}_{D C}$ rated current. For rated currents below $100 A_{D C}$, the filter requirement is identical to Light Industry (First Environment).

Three-phase filters

EMC filters are necessary to fulfill the standard for emitted interference if a converter shall be run at a public low voltage line, in Europe for example with 400 V . Such lines have a grounded neutral conductor. ABB offers suitable three-phase filters for $400 \mathrm{~V}_{\mathrm{AC}}$. For $440 \mathrm{~V}_{\mathrm{AC}}$ public low voltage lines outside Europe $500 \mathrm{~V}_{\mathrm{AC}}$ filters are available. Optimize the filters for the real motor currents:
$-\mathrm{i}_{\text {Filter }}=0.8{ }^{*} \mathrm{i}_{\text {Mot max }}$; the factor 0.8 respects the current ripple.
Lines with $500 \mathrm{~V}_{\mathrm{AC}}$ and higher are not public. They are local networks inside factories, and they do not supply sensitive electronics. Therefore, converters do not need EMC filters if they shall run with $500 \mathrm{~V}_{\mathrm{AC}}$ and more.

EMC filters

Further information is available in the Technical Guide.

The paragraphs below describe selection of the - the product's actual emissions. electrical components in conformity with the EMC Guideline. The aim of the EMC Guideline is, as the name implies, to achieve electromagnetic compatibility with other products and systems. The guideline ensures that the emissions from the product concerned are so low that they do not impair another product's interference immunity.
In the context of the EMC Guideline, two aspects must be borne in mind:

- the product's interference immunity and

The EMC Guideline expects EMC to be taken into account when developing a product; however, EMC cannot be designed in, it can only be quantitatively measured.

Notes on EMC conformity:

The conformity procedure is the responsibility of both the power converter's supplier and the manufacturer of the machine or system concerned, in proportion to their share in expanding the electrical equipment involved.

First environment (residential area with light industry) with PDS category C2

For compliance with the protection objectives of the German EMC Act (EMVG) in systems and machines, the following EMC standards must be satisfied: Product Standard EN 61800-3
EMC standard for drive systems (PowerDriveSystem), interference immunity and emissions in residential areas, enterprise zones with light industry and in industrial facilities. This standard must be complied with in the EU for satisfying the EMC requirements for systems and machines!

For emitted interference, the following apply:
EN 61000-6-3 Specialized basic standard for emissions in light industry can be satisfied with special features (mains filters, screened power cables) in the lower rating range *(EN 50081-1).
EN 61000-6-4 Specialized basic standard for emissions in industry *(EN 50081-2)
For interference immunity, the following apply:
EN 61000-6-1 Specialized basic standard for interference immunity in residential areas *(EN 50082-1)
EN 61000-6-2 Specialized basic standard for interference immunity in industry. If this standard is satisfied, then the EN 61000-6-1 standard is automatically satisfied as well *(EN 50082-2).

* The old generic standards are given in brackets

(4) Auxiliary transformer (T2) for converter electronics and fan

The converter module requires various auxiliary voltages, e.g. the module's electronics and cooling fans requires either a single-phase supply of $115 \mathrm{~V}_{\mathrm{AC}}$ or $230 \mathrm{~V}_{\mathrm{AC}}$. The auxiliary transformer (T2) is designed to supply the module's electronics and cooling fans.

(5) Start, Stop and E-stop control

The relay logic is splitted into three parts:

1. Generation of On / Off and Start I Stop commands:

The commands represented by K20 and K21 (latching interface relay) can also be generated by a PLC and transferred to the terminals of the converter either by relays, using galvanic isolation or directly via 24 V signals. There is no need to use hardwired signals. Transfer these commands via serial communication. Even a mixed solution can be realized by selecting different possibilities for the one or the other signal (see parameter group 11).

2. Generation of control and monitoring signals:

Control the main contactor K1 for the armature circuit by the dry contact of DO8 located on the SDCS-PIN-F. The status of motor (K6) and converter (K8) fans can be monitored by means of MotFanAck (10.06).

3. Off2 (Coast Stop) and Off3 (E-stop):

Beside On / Off and Start / Stop the drive is equipped with two additional stop functions Off2 (Coast Stop) and Off3 (E-stop) according to Profibus standard. Off3 (E-stop) is scalable via E StopMode (21.04) to perform stop category 1. Connect this function to the E-stop push button without any time delay. In case of E StopMode (21.04) = RampStop the K15 timer relay must be set longer than E StopRamp (22.04). For E StopMode (21.04) = Coast the drive opens the main contactor immediately.
Off2 (Coast Stop) switches the DC current off as fast as possible and prepares the drive to open the main contactor or drop the mains supply. For a normal DC motor load the time to force the DC current to zero is below 20 ms . This function should be connected to all signals and safety functions opening the main contactor. This function is important for $4-Q$ drives. Do not open main contactor during regenerative current. The correct sequence is:

1. switch off regenerative current,
2. then open the main contactor.

In case the E-stop push button is hit, the information is transferred to the converter via DI5. In case E StopMode (21.04) = RampStop or TorqueLimit the converter will decelerate the motor and then open the main contactor. If the drive has not finished the function within the K15 timer setting, the drive must get the command to switch off the current via K16. After the K16 timer has elapsed, the main contactor is opened immediately, independent of the drive's status.

Cabling

Thermal overload and short-circuit protection

The drive protects itself and the input and motor cables against thermal overload when the cables are dimensioned according to the nominal current of the drive.

Power cables

Dimension the mains and motor cables according to local regulations. The cables must:

1. be able to carry the DCS550 load current,
2. be rated for at least $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$,
3. fulfill short-circuit protection,
4. be rated according permissible touch voltage appearing under fault conditions (so that the fault point voltage will not rise too high when an earth fault occurs) and
5. be screened according to safety regulations.

Mains cable (AC line cable) short-circuit protection

Always protect the input cable with fuses. Size the fuses according to local safety regulations, appropriate input voltage and the rated current of the drive, see chapter Technical Data.
High-speed semiconductor fuses provide short-circuit protection, but do not provide thermal overload protection.

Control / signal cables

Used screened cables for digital signals, which are longer than 3 m and all cables for analogue signals. Connect each screen at both ends by metal clamps or comparable means directly on clean metal surfaces, if both earthing points belong to the same earth line. Otherwise, connect a capacitor to earth on one end. In the converter cabinet this kind of connection must be made directly on the sheet metal close to the terminals and if the cable comes from outside also on the PE bar. At the other end of the cable, connect the screen well with the housing of the signal emitter or receiver.

Connection of cable screens with metal clamps to the metal surface of the electronic tray.

A double shielded twisted pair cable, e.g. JAMAK by NK Cables, Finland), must be used for analogue signals and the pulse encoder signals. Employ one individually shielded pair for each signal. Do not use common return for different analogue signals.
A double shielded cable is the best alternative for low voltage digital signals but single shielded twisted multi pair cable is also usable.

Double shielded twisted pair cable

Single shielded twisted multi pair cable

- Pairs should be twisted as close to terminals as possible.
- Run analogue and digital signals in separate, screened cables.
- Relay-controlled signals, providing their voltage does not exceed 48 V , can be run in the same cables as digital input signals. It is recommended that the relay-controlled signals be run as twisted pairs too.

Attention:

Never run $24 \mathrm{~V}_{\mathrm{DC}}$ and 115 / $230 \mathrm{~V}_{\mathrm{AC}}$ signals in the same cable!

Co-axial cables

Recommendations for use with DCS550:

- 75Ω type,
- RG59 cable with diameter 7 mm or RG11 cable 11 mm and
- a maximum cable length of 300 m .

Relay cables

Cable types with braided metallic screens (e.g. ÖLFLEX, LAPPKABEL, Germany) has been tested and approved by ABB.

DCS Control Panel cable

The cable connecting the DCS Control Panel to the DCS550 converter module must not exceed 3 meters (10 ft.). The cable type tested and approved by ABB is included in the DCS Control Panel option kits.

Fieldbus cables

Fieldbus cables can be quite different, depending on the fieldbus type. Please refer to control / signal cables and co-axial cables.

Connection example in accordance with EMC

The example shows the principle structure of a DC drive and its connections. It is not a binding recommendation, and it cannot respect all conditions of a plant. Therefore, consider each drive separately and with respect to the special application. Additionally take the general installation and safety rules into account:

Planning the electrical installation

(6) Cooling fans

Fan assignment for DCS550:

Converter type	Size	Configuration	Fan type
$\begin{aligned} & \text { DCS550-S01-0020, ..., } \\ & \text { DCS550-S02-0025 } \end{aligned}$	F1		No fan, convection cooled
$\begin{aligned} & \text { DCS550-S01-0045, ..., } \\ & \text { DCS550-S02-0100 } \end{aligned}$		1	$1 \times 3110 \mathrm{KL}-05 \mathrm{~W}$ (internal $24 \mathrm{~V}_{\mathrm{DC}}$)
$\begin{aligned} & \text { DCS550-S01-0135, ... } \\ & \text { DCS550-S02-0300 } \end{aligned}$	F2	2	$2 \times 4715 \mathrm{MS}-12 \mathrm{~T}\left(115 \mathrm{~V}_{\mathrm{AC}} / 230 \mathrm{~V}_{\mathrm{AC}}\right)$
$\begin{aligned} & \text { DCS550-S01-0315, ... } \\ & \text { DCS550-S02-0450 } \end{aligned}$	F3		
$\begin{aligned} & \text { DCS550-S01-0470, ..., } \\ & \text { DCS550-S02-0520 } \\ & \hline \end{aligned}$		3	$\begin{aligned} & 2 \times 4715 \mathrm{MS}-12 \mathrm{~T}\left(115 \mathrm{~V}_{\mathrm{AC}} / 230 \mathrm{~V}_{\mathrm{AC}}\right) \\ & 2 \times 3115 \mathrm{FS}-12 \mathrm{~T}\left(115 \mathrm{~V}_{\mathrm{AC}} / 230 \mathrm{~V}_{\mathrm{AC}}\right) \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { DCS550-S01-0610, ..., } \\ & \text { DCS550-S02-0820 } \end{aligned}$	F4	4	$1 \times \mathrm{W} 2 \mathrm{E} 200$ ($230 \mathrm{~V}_{\text {AC }}$)
$\begin{aligned} & \text { DCS550-S01-0900, ..., } \\ & \text { DCS550-S02-1000 } \end{aligned}$			$1 \times \mathrm{W} 2 \mathrm{E} 250\left(230 \mathrm{~V}_{\text {AC }}\right)$

Fan data for DCS550:

Fan	3110 KL-05W	4715 MS-12T		3115 FS-12T		W2E200		W2E250	
Rated voltage [V_{AC}]	$24 \mathrm{~V} \mathrm{VC}^{1}$	115; 1~		115; 1~		230; 1~		230; 1~	
Tolerance [\%]	+15/-50	± 10		± 10		+6/-10		+6/-10	
Frequency [Hz]	-	50	60	50	60	50	60	50	60
Power consumption [W]	2.88	16	13	9.5	8.0	64	80	135	185
Current consumption [A]	0.12	0.2	0.17	0.075	0.060	0.29	0.35	0.59	0.82
Blocking current [A]		<0.3	<0.26	<0.085	<0.075	<0.7	<0.8	<0.9	<0.9
Air flow [$\mathrm{m}^{3} / \mathrm{h}$] freely blowing	66	156	180	47.5	55	925	1030	1860	1975
Max. ambient temp. [${ }^{\circ} \mathrm{C}$]	< 70	< 60		<70		<70		< 60	
Useful lifetime of grease	approximately $70,000 \mathrm{~h} / 25^{\circ}$	approximately $40,000 \mathrm{~h} / 60^{\circ}$		approximately $50,000 \mathrm{~h} / 20^{\circ}$		approximately 40,000 h / 60			
Protection	DC	Impedance (2)		Impedance		Internal temperature detector			

(1) Internally connected
(2) Increased losses due to increased current with a blocked rotor will not result in a winding temperature, higher than permissible for the insulation class being involved.

Fan connection for DCS550:

Configuration 1
F1

[^0]Planning the electrical installation

Electrical installation

Chapter overview

This chapter describes the electrical installation procedure of the DCS550.

WARNING!

A qualified electrician may only carry out the work described in this chapter. Follow the Safety instructions on the first pages of this manual. Ignoring the safety instructions can cause injury or death.
Make sure that the drive is disconnected from the mains (input power) during installation. If the drive was already connected to the mains, wait for 5 min . after disconnecting mains power.

Further information is available in the Technical Guide.

Checking the insulation of the assembly

Every drive has been tested for insulation between the main circuit and the chassis (2500 V rms 50 Hz for 1 second) at the factory. Therefore, do not make any voltage tolerance or insulation resistance tests (e.g. hi-pot or megger) on any part of the drive. Check the insulation of the assembly as follows.

WARNING!
Check the insulation before connecting the drive to the mains. Make sure that the drive is disconnected from the mains (input power).

1. Check that the motor cable is disconnected from the drive output terminals C1, D1, F+ and F-.
2. Measure the insulation resistances of the motor cable and the motor between each circuit (C1, D1) / (F+, F-) and Protective Earth (PE) by using a measuring voltage of 1 kV DC. The insulation resistance must be higher than $1 \mathrm{M} \Omega$.

Connection of a motor temperature sensor to the drive I/O

WARNING!

IEC 60664 requires double or reinforced insulation between live parts and the surface of accessible parts of electrical equipment that are either nonconductive or conductive but not connected to the protective earth. To fulfill this requirement, the connection of a thermistor (or other similar components) to the inputs of the drive can be implemented by 3 alternate ways:

1. there is double or reinforced insulation between the thermistor and live parts of the motor,
2. circuits connected to all digital and analogue inputs of the drive are protected against contact and insulated with basic insulation (the same voltage level as the drive main circuit) from other low voltage circuits or
3. an external thermistor relay is used. Rate the insulation of the relay for the same voltage level as the main circuit of the drive.

Power connections

IT (ungrounded) systems

Don't use EMC filters in IT systems:

The screen winding of an existing dedicated transformers must be grounded:

For installations without low voltage switch (e.g. contactor, air-circuit-breaker) use an overvoltage protection on the secondary side of the mains transformer.
The voltage shift of the isolated supply must not be larger than the voltage shift in case on an earth fault:

Supply voltage

Check voltage levels of:

- auxiliary voltage (X99 on SDCS-PIN-F),
- cooling fan terminals and
- mains voltage connected to U1, V1, W1.

Connecting the power cables

Check:

- Grounding and screening of power cables see chapter Cabling.
- Cross sectional areas and tightening torques of power cable, see chapter Cross-sectional areas Tightening torques.

Cross-sectional areas - Tightening torques

Recommended cross-sectional area according to DINVDE 0276-1000 and DINVDE 0100-540 (PE) trefoil arrangement, up to $50^{\circ} \mathrm{C}$ ambient temperature. The necessary wire torque at $60^{\circ} \mathrm{C}$ wire temperature is the same as recommended in the following tables.

Excitation:

Size	F1	F2	F3	F4
DC output current	12 A	18 A	25 A	35 A
max. cross sectional area	$6 \mathrm{~mm}^{2} /$ AWG 10			
min. cross sectional area	$2.5 \mathrm{~mm}^{2} /$ AWG 16	$4 \mathrm{~mm}^{2} /$ AWG 13	$6 \mathrm{~mm}^{2} / \mathrm{AWG} 11$	$6 \mathrm{~mm}^{2} / \mathrm{AWG} \mathrm{10}$
Tightening torque	$1.5, \ldots, 1.7 \mathrm{Nm}$			

Armature:

Converter type	C1, D1			U1, V1, W1			PE		
	IDC			$\begin{gathered} \mathrm{lv} \\ {[\mathrm{~A} \sim]} \end{gathered}$					$\underset{\sim}{y}$
$\begin{aligned} & \text { DCS550-S01-0020, } \\ & \text { DCS550-S02-0025 } \end{aligned}$	25	1×6	-	41	1×4	-	1x 4	$1 \times \mathrm{M6}$	0
$\begin{aligned} & \text { DCS550-S01-0045, } \\ & \text { DCS550-S02-0050 } \end{aligned}$	50	1×10	-	41	1×6	-	1x 6	$1 \times \mathrm{M6}$	6
$\begin{aligned} & \text { DCS550-S01-0065, } \\ & \text { DCS550-S02-0075 } \end{aligned}$	75	1×25	-	61	1×25	-	1x 16	$1 \times \mathrm{M6}$	6
$\begin{aligned} & \text { DCS550-S01-0090, } \\ & \text { DCS550-S02-0100 } \end{aligned}$	100	1×25	-	82	1×25	-	1x 16	$1 \times \mathrm{M6}$	6
$\begin{aligned} & \text { DCS550-S01-0135, } \\ & \text { DCS550-S02-0150 } \end{aligned}$	150	1×35	-	114	1×35	-	1×16	1 x M10	25
$\begin{aligned} & \text { DCS550-S01-0180, } \\ & \text { DCS550-S02-0200 } \end{aligned}$	200	2×35	1×95	163	2×25	1×95	1x 25	1 x M10	25
$\begin{aligned} & \text { DCS550-S01-0225, } \\ & \text { DCS550-S02-0250 } \end{aligned}$	250	2×35	1×95	204	2×25	1×95	1x 25	1 x M10	25
$\begin{aligned} & \text { DCS550-S01-0270, } \\ & \text { DCS550-S01-0315 } \end{aligned}$	315	2×70	1×95	220	2×50	1×95	1x 50	$1 \times \mathrm{M} 10$	25
DCS550-S02-0350	350	2×70	-	286	2×50		1x 50	$1 \times \mathrm{M} 10$	25
$\begin{aligned} & \text { DCS550-S01-0405, } \\ & \text { DCS550-S02-0450 } \end{aligned}$	450	2×95	-	367	2×95	-	1x 50	$1 \times \mathrm{M} 10$	25
$\begin{aligned} & \text { DCS550-S01-0470, } \\ & \text { DCS550-S02-0520 } \end{aligned}$	520	2×95	-	424	2×95	-	1x 50	1 M M10	25
DCS550-S01-0610	610	2×120	-	555	2×120	-	1×120	$1 \times \mathrm{M} 12$	50
DCS550-S02-0680	680	2×120	-	555	2×120	-	1x120	$1 \times \mathrm{M} 12$	50
$\begin{aligned} & \text { DCS550-S01-0740, } \\ & \text { DCS550-S02-0820 } \end{aligned}$	820	2×150	-	669	2×120	-	1x120	$1 \times \mathrm{M} 12$	50
$\begin{aligned} & \text { DCS550-S01-0900, } \\ & \text { DCS550-S02-1000 } \end{aligned}$	1000	2×185	-	816	2×150	-	1x150	1 x M12	50

You will find instructions on how to calculate the PE conductor's cross-sectional area in VDE 0100 or in equivalent national standards. We would remind you that power converters might have a current-limiting effect.

Drive interfaces

Location R-type options and interfaces

Tighten the screws to secure the extension modules.

Pulse encoder connection

Power supply for pulse encoders

The SDCS-CON-F uses jumper S4 to select either the 5 V or 24 V supply voltage.

Encoder supply	Jumper S4 setting	Hardware configuration
5 V	$10-11$	sense controlled
24 V	$11-12$	no sense

Use the sense feedback when the power supply level of a differential pulse encoder only is 5 V .

Commissioning hint:

If the drive's measured direction of rotation is wrong or does not correspond to the measured EMF speed, F522 SpeedFb may appear during start-up. If necessary correct it by exchanging the field connections F1 and F2 or exchange tracks $\mathrm{A}+\& \mathrm{~A}$-.

Pulse encoder connection principles

Two different incremental encoder connections are available:

1. differential connection; pulse encoders generating either voltage or current signals can be used,
2. single-ended (push pull) connection; generating only voltage signals can be used

single ended (push pull)

In case of a single ended 5 V encoder the jumper S 4 has be set to a neutral position. To get a threshold lower than 5 V each terminal $\mathrm{X} 3: 2,4,6$ must be connected via a resistor R to GND.

Cable length

The maximum distance between pulse encoder and interface board dependents on the voltage drop of the connecting lines and on the output and input configuration of the used components. Use cables according to the table below. The voltage regulator can compensate the voltage drop caused by the cable. Use twisted pair cables with pair shielding plus overall shielding:

Cable length	Parallel wires for power source \& GND	Cable used
0 to 50 m	$1^{*} 0.25 \mathrm{~mm}^{2}$	$12^{*} 0.25 \mathrm{~mm}^{2}$
50 to 100 m	$2^{*} 0.25 \mathrm{~mm}^{2}$	$12^{*} 0.25 \mathrm{~mm}^{2}$
100 to 150 m	$3^{*} 0.25 \mathrm{~mm}^{2}$	$14^{*} 0.25 \mathrm{~mm}^{2}$

Cable length	Parallel wires for power source \& GND	Cable used
0 to $164 \mathrm{ft}$.	$1^{*} 24 \mathrm{AWG}$	$12{ }^{*} 24 \mathrm{AWG}$
164 to 328 ft	$2^{*} 24 \mathrm{AWG}$	$12{ }^{*} 24 \mathrm{AWG}$
328 to 492 ft.	$3^{*} 24 \mathrm{AWG}$	$14{ }^{*} 24 \mathrm{AWG}$

Installation checklist

Check the mechanical and electrical installation of the drive before start-up. Go through the checklist below together with another person. Read the Safety instructions on the first pages of this manual before you work on the unit.

MECHANICAL INSTALLATION

\square The ambient operating conditions are allowed (see Environmental conditions, Current ratings)
\square The unit is mounted properly on a vertical non-flammable wall (see Mechanical installation)
\square Cooling air will flow freely (see Mechanical installation)
\square The motor and the driven equipment is ready for start
\square All screen terminals are checked for tightness (see Cabling)
\square All cable connections are seated properly (see Cabling)
ELECTRICAL INSTALLATION (see Planning the electrical installation, Electrical installation)
$\square \quad$ The converter modules are grounded properly
\square The mains voltage matches the converter module's nominal input voltage
\square The mains (input power) connections at U1, V1 and W1 (L1, L2 and L3) are OK
\square The appropriate mains fuses and disconnector are installed
\square The motor connections at C1, D1 and F+, F- and their tightening torques are OK
\square Motor cable routing (armature and excitation) is OK
\square Check that the screens are properly installed at the motor and in the drive cabinet
\square The connections L+, L-, F+ and F- at motor and drive are OK
\square The control connections are OK
\square If pulse encoder is used, check the encoder cables and correct direction of rotation
\square PTC, Klixon cables: Check that the connections are appropriate for the type of sensor used in the motor
\square Check the prevention of unexpected start-up (on inhibit, coast stop) circuit for proper function
\square Proper function of E-stop circuit and relay
\square Cooling fan power wiring connected
\square The external control connections inside the drive are OK
\square There are no tools, foreign objects or dust from drilling inside the drive
\square Drive, motor connection box and other covers are in place

Electronic board details

Chapter overview

This chapter describes the electronics of the DCS550.

Terminal locations

DCS550 module

Terminal allocation

$\begin{gathered} \text { F2 / F3 } \\ 135 \mathrm{~A}-520 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { F4 } \\ 610 \mathrm{~A}-1000 \mathrm{~A} \end{gathered}$
Fan supply 230 V	Fan supply $230 \mathrm{~V}_{\mathrm{AC}}$ \qquad X52: $504 \begin{array}{llll}5 & 2 & 1\end{array}$
Fan supply $115 \mathrm{~V}_{\mathrm{AC}}$	

SDCS-CON-F: Terminal allocation

Table of used boards

$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { Size } & \text { Converter type } & \text { SDCS-CON-F } & \text { SDCS-PIN-F } & \text { SDCS-BAB-F01 } & \begin{array}{c}\text { SDCS-BAB-F02 } \\ \text { Using fuses } \\ \text { F100 to F102 on } \\ \text { SDCS-PIN-F }\end{array} & \begin{array}{c}\text { SDCS-BAB-F02 } \\ \text { Using external } \\ \text { fuses F401 } \\ \text { F to }\end{array} \\ \hline \text { F1 } & & \text { FCS503 }\end{array}\right]$

Control board SDCS-CON-F

Layout

Jumper coding	
$\left.\begin{array}{r} \text { S1 }_{2}^{3}{ }_{2} \\ { }_{1} \\ { }^{3} \square \\ { }_{2} \\ 1 \end{array}\right]$	* Jumper parking position, normal DC tacho Reserved, do not use * AITAC+ (X1:4) connected to GND Jumper parking position; AITAC+ (X1:4) not grounded * Jumper parking position; do not change Reserved, do not use
$\begin{array}{r} \mathbf{S} 2{ }_{1}^{2} \boxplus_{3}^{4} \\ { }_{1}^{2} \boxplus_{3}^{4} \end{array}$	* Al1 (X1:5-6): $\mathrm{R}_{\text {in }}=200 \mathrm{k}$ range $\pm 10 \mathrm{~V}$ Al1 (X1:5-6): $\mathrm{R}_{\text {in }}=250{ }^{* *}$ range $\pm 20 \mathrm{~mA}$
$\begin{aligned} & \mathrm{S} 3{ }_{1}^{2} \mathrm{~T}_{3}^{4} \\ & { }_{1}^{2} \mathrm{~B}_{3}^{4} \\ & { }_{6}^{5} \boxplus_{7}^{8} \\ & { }_{6}^{5} \boxplus_{7}^{8} \end{aligned}$	$\begin{aligned} & \text { * Al2 (X1:7-8): } \mathrm{R}_{\text {in }}=200 \mathrm{k} \quad \text { range } \pm 10 \mathrm{~V} \\ & \text { Al2 (X1:7-8): } \mathrm{R}_{\text {in }}=250 \quad{ }^{* *} \text { range } \pm 20 \mathrm{~mA} \\ & \text { * Jumper parking position; } \\ & \text { no PTC connected } \\ & \text { PTC connected at X1:7-8, } 4.75 \mathrm{k} \\ & \text { pull-up resistor activated } \end{aligned}$

S4 3 \prod_{8}^{9} * Encoder mode: differential; RC loads

Location

The SDCS-CON-F is mounted on an electronic tray. The electronic tray is put in the housing by means of four hinges and the SDCS-CON-F is connected with the SDCS-PIN-F through three flat cables.

Memory circuit

The SDCS-CON-F is equipped with a flash PROM that contains the firmware and the stored parameters. It is possible to handle the parameters by DCS Control Panel, DWL or overriding control. Changed parameters are stored immediately in the flash with the exception of parameters for cyclic communication via the dataset table in groups 90 to 92 and pointers in group 51.
In addition, the fault logger entries are stored in the flash during de-energizing the auxiliary power.

Watchdog function

The SDCS-CON-F has an internal watchdog. The watchdog controls the proper function of the SDCS-CON-F and the firmware. If the watchdog trips, it has the following effects:

- the thyristor firing control is reset and disabled,
- all Dl's are forced low (zero) and
- all programmable AO's are reset to zero (0 V)

Terminal description

- Connectors X1 to X5 provide the standard digital and analog connection of the drive.
- Use connector X9 or slot1 for R-type extension I/O modules and R-type fieldbus adapters.
- Use connector X11 or slot3 only for R-type extension I/O modules.

	Connector X9 or slot1	Connector X11 or slot3
RAIO, RDIO	X	X
R-type fieldbus adapters	X	

- Connectors X12 and X13 connect the SDCS-CON-F to the SDCS-PIN-F for voltage, current and temperature measurement. Additionally the firing pulses are sent to the thyristors trough the SDCS-PIN-F.
- Use connector X33 to connect the DCS Control Panel either directly via a 40 mm jack plug or via a CAT 1:1 cable with RJ45 plugs.
- Use connector X34 for firmware download, to connect DriveWindow Light, commissioning assistant and DriveAP tool. Usually use the RS232 interface for parameter setting and commissioning the drive via DriveWindow Light.
- Use connector X37 to connect the SDCS-CON-F to the power supply from the SDCS-PIN-F.
- A seven-segment display named H2500 is located on the control board SDCS-CON-F to show the state of drive. It displays for example fault- and alarm codes. A detailed description of the seven-segment display is available in chapter Status messages.

I/O connections

Encoder supply		Remarks
Inputs are not isolated Impedance $=120 \Omega$, if selected maximum frequency $\leq 300 \mathrm{kHz}$		
5 V	.$\leq 250 \mathrm{~mA}$	Sense lines for GND and supply to correct voltage drops on cable (only available for 5 V encoders)
24 V	$\leq 200 \mathrm{~mA}$	

Input	Signal definition	Remarks
$0 \ldots 7.3 \mathrm{~V}$	Firmware	\Rightarrow "0" status
$7.5 \ldots 50 \mathrm{~V}$		$\Rightarrow 1 "$ status

Output	Signal definition	Remarks
$50^{*} \mathrm{~mA} ;$ 22 V at no load	Firmware	Current limit for all 7 outputs together is maximum160 mA. Do not apply any reverse voltages!

* short circuit protected

Power Interface board SDCS-PIN-F

Layout

Electronic board details

Location

The SDCS-PIN-F is located between the power part and the control board SDCS-CON-F.

Functions

The DCS550 provides an automatic adjustment for current and voltage measurement, burden resistor settings and 2-Q or 4-Q operation by means of setting parameters in the firmware. The SDCS-PIN-F provides:

- the power supply for all the auxiliary voltages of the whole drive and the connected options,
- control of armature bridge including high ohmic measurement of DC- and AC voltage and an interface for the current transformer measuring the armature current,
- control of the OnBoard field exciter and field current measurement,
- an interface for the heatsink temperature measurement with a PTC resistor,
- a snubber circuit for thyristor protection together with the snubber resistor mounted on the heatsink.

Terminal description

- The OnBoard field exciter with firing pulse transformers and field current measurement via transformer T100 is located on the SDCS-PIN-F. The power part is a three phase half-controlled bridge supplied from the mains U1, V1, W1 via fuses F100, F101, F102 and is located on the heat sink.
The measurement of the field current is automatically scaled and selected by the firmware. De-select a not needed OnBoard field exciter by means of the firmware.
- Connector X96 controls the main circuit breaker. To save an additional relay in the cabinet the DCS550 provides a normally open relay contact integrated on the SDCS-PIN-F. Digital output 8 controls the relay output at connector X96. The function or signal definition of digital output 8 is done in the firmware by means of parameters.

- Use connector X99 to connect the auxiliary input voltages of $230 \mathrm{~V}_{\mathrm{AC}}, 115 \mathrm{~V}_{\mathrm{AC}}$ or $230 \mathrm{~V}_{\mathrm{DC}}$.

Auxiliary voltages	$115 \mathrm{~V}_{\mathrm{AC}}$	$230 \mathrm{~V}_{\mathrm{AC}}$	$230 \mathrm{~V}_{\mathrm{DC}}$
Tolerance	$-15 \% /+10 \%$	$-15 \% /+10 \%$	$-15 \% /+10 \%$
Frequency	45 Hz to 65 Hz	45 Hz to 65 Hz	
Power consumption	120 VA	120 VA	
Power loss	$\leq 60 \mathrm{~W}$	$\leq 60 \mathrm{~W}$	$\leq 60 \mathrm{~W}$
Inrush current	$* 20 \mathrm{~A} / 20 \mathrm{~ms}$	$10 \mathrm{~A} / 20 \mathrm{~ms}$	$10 \mathrm{~A} / 20 \mathrm{~ms}$
recommended fusing	6 AT	6 AT	6 AT
Mains buffering	$\min 30 \mathrm{~ms}$	$\operatorname{min~} 300 \mathrm{~ms}$	150 ms
Power fail	$<95 \mathrm{~V}_{\mathrm{AC}}$	$<95 \mathrm{~V}_{\mathrm{AC}}$	$<140 \mathrm{~V}_{\mathrm{DC}}$

OnBoard field exciters SDCS-BAB-F01 and SDCS-BAB-F02

Layout

Layout SDCS-BAB-F02 for module sizes F3 and F4:

Location

The SDCS-BAB-F is located between the power part and the control board SDCS-CON-F.

Functions

The SDCS-BAB-F is a three-phase half-controlled field exciter. The field exciter is directly supplied from the armature mains. Its firing pulses and snubbers are located on the SDCS-PIN-F. For connection details see next pages.

Size	Converter type	Used type	Used fuses	T100 threads	$\mathrm{I}_{\mathrm{F}}[\mathrm{A}]$
F1	DCS550-S01-0020 - DCS550-S02-0100	SDCS-BAB-F01	F100 - F102 on SDCS-PIN-F KTK 25 = 25 A	3^{*}	$1-12$
F2	DCS550-S01-0135- DCS550-S02-0300	SDCS-BAB-F01	F100 - F102 on SDCS-PIN-F KTK 25 = 25 A	2^{*}	$1-18$
F3	DCS550-S01-0315- DCS550-S02-0520	SDCS-BAB-F02	F100 - F102 on SDCS-PIN-F KTK 25 = 25 A	1^{*}	$1-25$
F4	DCS550-S01-0610- DCS550-S02-1000	SDCS-BAB-F02	F401 - F403 in drive KTK 30 = 30 A	1^{*}	$1-35$

*Number of threads through the hole in the T100 (e.g. 3 threads equal 2 loops)
Circuit diagram

Electronic board details

Typical armature circuit diagram for module sizes F1 and F2 using SDCS-PIN-F and SDCS-BAB-F01:

Typical armature circuit diagram for module sizes F3 and F4 using SDCS-PIN-F and SDCS-BAB-F02:

Electronic board details

Accessories

Chapter overview

This chapter describes the accessories for the DCS550.

(1) Line reactors (L1)

Line reactor types ND01 to ND13 ($u_{k}=1 \%$)

Line reactors of types ND01 to ND13 are sized to the unit's nominal current and frequency ($50 / 60 \mathrm{~Hz}$). These line reactors with a u_{k} of 1 are designed for use in industrial environment (minimum requirements). They have low inductive voltage drop, but deep commutation notches.
Line reactors ND01 to ND06 are equipped with cables. The larger ones ND07 to ND13 are equipped with busbars. When connecting them to other components, please consider relevant standards in case the busbar materials are different.

Attention:

Do not use the line reactor terminals as cable or busbar support!

Size	Converter type (2-Q)	Converter type (4-Q)	Line reactor ($\mathrm{u}_{\mathrm{k}}=1 \%$)	Design figure
F1	DCS550-S01-0020	DCS550-S02-0025	ND01	1
	DCS550-S01-0045	DCS550-S02-0050	ND02	
	DCS550-S01-0065	DCS550-S02-0075	ND04	
	DCS550-S01-0090	DCS550-S02-0100	ND06	
F2	DCS550-S01-0135	DCS550-S02-0150		
	DCS550-S01-0180	DCS550-S02-0200	ND07	2
	DCS550-S01-0225	DCS550-S02-0250		
	DCS550-S01-0270	DCS550-S02-0300	ND09	
F3	DCS550-S01-0315	DCS550-S02-0350		
	DCS550-S01-0405	DCS550-S02-0450	ND10	
	DCS550-S01-0470	DCS550-S02-0520		
F4	DCS550-S01-0610	DCS550-S02-0680	ND12	
	DCS550-S01-0740	DCS550-S02-0820	ND13	3
	DCS550-S01-0900	DCS550-S02-1000		

Fig. 1

Fig. 2

Fig. 3

Line reactor$\left(u_{k}=1 \%\right)$	$\mathrm{L}[\mu \mathrm{H}]$	$\mathrm{I}_{\text {RMS }}[\mathrm{A}]$	$\mathrm{i}_{\text {peak }}$ [A]	Rated voltage $\left[\mathrm{U}_{\mathrm{N}}\right]$	Weight [kg]	Power losses	
						Fe [W]	$\mathrm{Cu}[\mathrm{W}]$
ND01	512	18	27	500	2.0	5	16
ND02	250	37	68		3.0	7	22
ND04	168	55	82		5.8	10	33
ND06	90	102	153		7.6	7	41
ND07	50	184	275		12.6	45	90
ND09	37.5	245	367		16.0	50	140
ND10	25.0	367	551		22.2	80	185
ND12	18.8	490	734		36.0	95	290
ND13	18.2	698	1047	690	46.8	170	160

Line reactor types ND01 to ND06

Line reactor types ND07 to ND12

Line reactor $\left(\mathrm{u}_{\mathrm{k}}=1 \%\right)$	A $[\mathrm{mm}]$	B $[\mathrm{mm}]$	C $[\mathrm{mm}]$	C 1 $[\mathrm{~mm}]$	E $[\mathrm{mm}]$	F $[\mathrm{mm}]$	G $[\mathrm{mm}]$	H $[\mathrm{mm}]$	I $[\mathrm{mm}]$	K $[\mathrm{mm}]$	L $[\mathrm{mm}]$	Busbar
ND07	285	230	86	100	250	176	65	80	9×18	385	232	$20^{*} 4$
ND09	327	250	99	100	292	224	63	100	9×18	423	280	$300^{*} 5$
ND10	408	250	99	100	374	224	63	100	11×18	504	280	$60^{*} 6$
ND12	458	250	112	113	424	224	63	100	13×18	554	280	$40^{*} 6$

Line reactor type ND13 all busbars are 40 * 10
Dimensions in [mm]:

Line reactor types ND401 to ND413 ($\mathrm{u}_{\mathrm{k}}=4$ \%)

Line reactors of types ND401 to ND413 are sized to the unit's nominal current and frequency ($50 / 60 \mathrm{~Hz}$).
These line reactors with $a u_{k}$ of 4 are designed for use in light industrial / residential environment. They have high inductive voltage drop, but reduced commutation notches. These reactors are designed for drives, which usually operate in speed control in 400 or $500 \mathrm{~V}_{\mathrm{AC}}$ networks. The percentage taken into account for that duty cycle is different:

- for $\mathrm{U}_{\text {supply }}=400 \mathrm{~V}_{\mathrm{AC}}$ follows $\mathrm{I}_{\mathrm{DC} 1}=90 \%$ of nominal current,
- for $\mathrm{U}_{\text {supply }}=500 \mathrm{~V}_{\mathrm{AC}}$ follows $\mathrm{I}_{\mathrm{DC} 2}=72 \%$ of nominal current.

Line reactors ND401 to ND402 are equipped with terminals. The larger ones ND403 to ND413 are equipped with busbars. When connecting them to other components, please consider relevant standards in case the busbar materials are different.

Attention:

Do not use the line reactor terminals as cable or busbar support!

Size	Converter type (2-Q)	Converter type (4-Q)	Line reactor ($u_{k}=4$ \%)	Design figure
F1	DCS550-S01-0020	DCS550-S02-0025	ND401	4
	DCS550-S01-0045	DCS550-S02-0050	ND402	
	DCS550-S01-0065	DCS550-S02-0075	ND403	5
	DCS550-S01-0090	DCS550-S02-0100	ND404	
F2	DCS550-S01-0135	DCS550-S02-0150	ND405	
	DCS550-S01-0180	DCS550-S02-0200	ND406	
	DCS550-S01-0225	DCS550-S02-0250	ND407	
	DCS550-S01-0270	DCS550-S02-0300	ND408	
F3	DCS550-S01-0315	DCS550-S02-0350		
	DCS550-S01-0405	DCS550-S02-0450	ND409	
	DCS550-S01-0470	DCS550-S02-0520	ND410	
	DCS550-S01-0610	DCS550-S02-0680	ND411	
	DCS550-S01-0740	DCS550-S02-0820	ND412	ND413
	DCS550-S01-0900	DCS550-S02-1000		

Fig. 4

Fig. 5

Line reactor$\left(u_{k}=4 \%\right)$	$\mathrm{L}[\mu \mathrm{H}]$	$\mathrm{I}_{\text {RMS }}$ [A]	$\mathrm{i}_{\text {peak }}[\mathrm{A}]$	Rated voltage $\left[U_{N}\right]$	Weight [kg]	Power losses		$\begin{gathered} \text { DC current for } U_{\text {mains }} \\ =400 \mathrm{~V}_{\mathrm{AC}} \end{gathered}$	$\begin{gathered} \text { DC current for } U_{\text {mains }} \\ =500 \mathrm{~V}_{\mathrm{AC}} \end{gathered}$
						Fe [W]	Cu [W]		
ND401	1000	18.5	27	400	3.5	13	35	22.6	18
ND402	600	37	68		7.5	13	50	45	36
ND403	450	55	82		11	42	90	67	54
ND404	350	74	111		13	78	105	90	72
ND405	250	104	156		19	91	105	127	101
ND406	160	148	220		22	104	130	179	143
ND407	120	192	288		23	117	130	234	187
ND408	90	252	387		29	137	160	315	252
ND409	70	332	498		33	170	215	405	324
ND410	60	406	609		51	260	225	495	396
ND411	50	502	753		56	260	300	612	490
ND412	40	605	805		62	280	335	738	590
ND413	35	740	1105		75	312	410	900	720

Accessories

Line reactor types ND401 to ND402

Line reactor $\left(u_{k}=4 \%\right)$	A $[\mathrm{mm}]$	B $[\mathrm{mm}]$	C $[\mathrm{mm}]$	D $[\mathrm{mm}]$	E $[\mathrm{mm}]$	F $[\mathrm{mm}]$	\varnothing G $[\mathrm{mm}]$	$\varnothing \mathrm{H}$ $[\mathrm{mm}]$
ND401	160	190	75	80	51	175	7	9
ND402	200	220	105	115	75	200	7	9

Line reactors type ND403 to ND408

Line reactor $\left(u_{\mathrm{k}}=4 \%\right)$	A $[\mathrm{mm}]$	B $[\mathrm{mm}]$	C $[\mathrm{mm}]$	D $[\mathrm{mm}]$	E $[\mathrm{mm}]$	F $[\mathrm{mm}]$	$\varnothing \mathrm{G}$ $[\mathrm{mm}]$	$\varnothing \mathrm{H}$ $[\mathrm{mm}]$	$\varnothing \mathrm{K}$ $[\mathrm{mm}]$
ND403	220	230	120	135	100	77.5	7	9	6.6
ND404	220	225	120	140	100	77.5	7	9	6.6
ND405	235	250	155	170	125	85	10	9	6.6
ND406	255	275	155	175	125	95	10	9	9
ND407	255	275	155	175	125	95	10	9	11
ND408	285	285	180	210	150	95	10	9	11

Line reactors type ND409 to ND413

Line reactor $\left(u_{\mathrm{k}}=4 \%\right)$	A $[\mathrm{mm}]$	B $[\mathrm{mm}]$	C $[\mathrm{mm}]$	D $[\mathrm{mm}]$	E $[\mathrm{mm}]$	F $[\mathrm{mm}]$	$\varnothing \mathrm{G}$ $[\mathrm{mm}]$	$\varnothing \mathrm{H}$ $[\mathrm{mm}]$	$\varnothing \mathrm{K}$ $[\mathrm{mm}]$
ND409	320	280	180	210	150	95	10	11	11
ND410	345	350	180	235	150	115	10	13	14
ND411	345	350	205	270	175	115	12	13	$2^{*} 11$
ND412	385	350	205	280	175	115	12	13	$2^{*} 11$
ND413	445	350	205	280	175	115	12	13	$2^{*} 11$

Accessories

(2) Semiconductor fuses (F1)

Semiconductor fuses and fuse holders for AC and DC power lines

The DCS550 requires external mains fuses. For regenerative drives, DC fuses are recommended. The third column of the table below assigns the AC fuse to the unit. In case the unit should be equipped with DC fuses, use the same type of fuse as used on the AC side.

Size	Converter type (2-Q)	Converter type (4-Q)	Fuse type	Fuse holder	Fuse type	Fuse holder
					North America	
F1	DCS550-S01-0020	DCS550-S02-0025	50A 660V UR	$\begin{gathered} \text { OFAX } 00 \text { S3L } \\ \text { Size } 0 \end{gathered}$	FWP-50B	1BS101
	DCS550-S01-0045	DCS550-S02-0050	63A 660V UR		FWP-60B	
	DCS550-S01-0065	DCS550-S02-0075	125A 660V UR		FWP-125A	$1 \mathrm{BS103}$
	DCS550-S01-0090	DCS550-S02-0100				
F2	DCS550-S01-0135	DCS550-S02-0150	200A 660V UR	OFAX 1 S3 Size 1	FWP-200A	
	DCS550-S01-0180	DCS550-S02-0200	250A 660V UR		FWP-250A	
	DCS550-S01-0225	DCS550-S02-0250	315A 660V UR		FWP-300A	
	DCS550-S01-0270	DCS550-S02-0300	500A 660V UR	OFAX 2 S3 Size 2	FWP-500A	
F3	DCS550-S01-0315	DCS550-S02-0350				
	DCS550-S01-0405	DCS550-S02-0450	700A 660V UR	OFAX 3 S3 Size 3	FWP-700A	See *
	DCS550-S01-0470	DCS550-S02-0520				
F4	DCS550-S01-0610	DCS550-S02-0680	900A 660V UR	$\begin{array}{\|c\|} \hline 3 x \text { 170H } 3006 \\ \text { Size } 4 \end{array}$	FWP-900A	
	DCS550-S01-0740	DCS550-S02-0820				
	DCS550-S01-0900	DCS550-S02-1000	1250A 660V UR		FWP-1200A	

* No fuse holder is available; attach the fuses directly to the busbar.

Dimensions of fuses

Size 0 to 3

Size	$\mathrm{a}[\mathrm{mm}]$	$\mathrm{b}[\mathrm{mm}]$	$\mathrm{c}[\mathrm{mm}]$	$\mathrm{d}[\mathrm{mm}]$	$\mathrm{e}[\mathrm{mm}]$
0	78.5	50	35	21	15
1	135	69	45	45	20
2	150	69	55	55	26
3	150	68	76	76	33

Size 4

Dimensions in [mm]:

Dimensions of fuse holders
Size 0 to 3
OFAX xx xxx

Fuse holder	h * w * d [mm]	Protection
OFAX 00 S3L	148*112*111	IP20
OFAX 1 S3	250 * 174 * 123	IP20
OFAX 1 S3	250 * 214 * 133	IP20
OFAX 1 S3	265 * 246 * 160	IP20

170H 3006 (IP00)

[^1]
(3) EMC filters (E1)

List of available EMC filters:

Size	Converter type (2-Q)	Converter type (4-Q)	Filter type for $440 \mathrm{~V}_{\text {AC }}$	Filter type for $500 \mathrm{~V}_{\text {AC }}$
F1	DCS550-S01-0020	DCS550-S02-0025	NF3-440-25	NF3-500-25
	DCS550-S01-0045	DCS550-S02-0050	NF3-440-50	NF3-500-50
	DCS550-S01-0065	DCS550-S02-0075	NF3-440-64	NF3-500-64
	DCS550-S01-0090	DCS550-S02-0100	NF3-440-80	NF3-500-80
F2	DCS550-S01-0135	DCS550-S02-0150	NF3-440-110	NF3-500-110
	DCS550-S01-0180	DCS550-S02-0200	NF3-500-320	
	DCS550-S01-0225	DCS550-S02-0250		
	DCS550-S01-0270	DCS550-S02-0300		
F3	DCS550-S01-0315	DCS550-S02-0350		
	DCS550-S01-0405	DCS550-S02-0450	NF3-500-600	
	DCS550-S01-0470	DCS550-S02-0520		
F4	DCS550-S01-0610	DCS550-S02-0680		
	DCS550-S01-0740	-		
	-	DCS550-S02-0820	NF3-690-1000 *	
	DCS550-S01-0900	DCS550-S02-1000		

* available on request

(4) Auxiliary transformer (T2) for converter electronics and fan

The auxiliary transformer (T2) is designed to supply the module's electronics and cooling fans.

Start-up

Chapter overview

This chapter describes the basic start-up procedure of the drive. A more detailed description of the signals and parameters involved in the procedure is available in section Signal and parameter list.

General

Operate the drive:

- local, with DWL or DCS Control Panel
- remote, with local I/O or overriding control.

The following start-up procedure uses DWL (for further information about DWL, consult its online help).
However, it is possible to change parameters with the DCS Control Panel. The start-up procedure includes actions that need only be taken when powering up the drive for the first time in a new installation (e.g. entering the motor data). After the start-up, the drive can be powered up without using these start-up functions again. Repeat the start-up procedure, if the start-up data need to be changed.
Refer to section Fault tracing in case problems should arise. In case of a major problem, disconnect mains and wait for 5 minutes before attempting any work on the drive, the motor, or the motor cables.

Commissioning

Start-up procedure

Observe the Safety Instructions at the beginning of this manual with extreme care during the start-up procedure! Only a qualified electrician should carry out the start-up procedure.

Tools

For drive commissioning following tools are mandatory:

- standard tools,
- an oscilloscope including memory function with either galvanically isolating transformer or isolating amplifier for safe measurements,
- a clamp on current probe (in case the scaling of the DC load current needs to be checked it must be a DC clamp on current probe),
- a voltmeter and
- DriveWindow Light including commissioning wizard and DWL AP.

Make sure that all equipment in use is suitable for the voltage level applied to the power part!

Checking with the power switched off

Check the settings of:

- the main breaker (e.g. overcurrent $=1.6 * I_{n}$, short circuit current $=10 * I_{n}$, time for thermal tripping $=10 \mathrm{~s}$),
- time, overcurrent, thermal and voltage relays,
- the earth fault protection (e.g. Bender relay)

Check the insulation of the mains voltage cables between the secondary side of the supply transformer and the drive:

- disconnect the supply transformer from its incoming voltage,
- check that all circuits between the mains and the drive (e.g. control / auxiliary voltage) are disconnected,
- measure the insulation resistance between L1-L2, L1 - L3, L2 - L3, L1 -PE, L2 - PE, L3-PE,
- the result should be M M s

Check the installation:

- crosscheck the wiring with the drawings,
- check the mechanical mounting of the motor and pulse encoder or analog tacho,
- make sure that the motor is connected in a correct way (armature, field, serial windings, cable shields),
- check the connections of the motor fan if existing,
- make sure that the converter fan is connected correctly,

Start-up

- if a pulse encoder is used make sure that pulse encoder's auxiliary voltage connection corresponds to its voltage and that the channel connection corresponds to correct direction of rotation,
- check that the shielding of the pulse encoder's cable is connected to the TE bar of the DCS550,
- if an analog tacho is used make sure that it is connected to the proper voltage input at the SDCS-CON-F:

X3:1-X3:4 (90-270 V)
X3:2-X3:4 (30-90V)
X3:3-X3:4 (8-30V)

- for all other cables make sure that both ends of the cables are connected and they do not cause any damage or danger when power is being switched on
Measuring the insulation resistance of the motor cables and the motor:
isolate the motor cables from the drive before testing the insulation resistance or voltage withstand of the
- cables or the motor,

Instructions how to measure the insulation resistance

- measure the insulation resistance between:

1. + cables and PE,
2. - cables and PE,
3. armature cables and field cables,
4. field - cable and PE,
5. field + cable and PE,

- the result should be $M \Omega s$

Setting of Jumpers:

- The boards of the DCS550 include jumpers to adapt the boards to different applications. Check the position of the jumpers before connecting voltage. For specific jumper settings, see chapter Electronics.
Check following items for each drive and mark the differences in the delivery documents:
- motor, analog tacho or pulse encoder and cooling fan rating plates data,
- direction of motor rotation,
- maximum and minimum speed and if fixed speeds are used,
- speed scaling factors:
- e.g. gear ratio, roll diameter,
- acceleration and deceleration times,
- operating modes:
- e.g. stop mode, E-stop mode,
- the amount of motors connected

Checking with the power switched on

There is dangerous voltage inside the cabinet!

Switching the power on:

- prior to connecting the voltage proceed as follows:

1. ensure that all the cable connections are checked and that the connections can't cause any danger,
2. close all doors of enclosed converter before switching power on,
3. be ready to trip the supply transformer if anything abnormal occurs,
4. switch the power on

Measurements made with power on:

- check the operation of the auxiliary equipment,

1. check the circuits for external interfaces on site:
2. E-stop circuit,
3. remote control of the main breaker,
4. signals connected to the control system,
5. other signals which remain to be checked

Connecting voltage to the drive:

- check from the delivery diagrams the type of boards and converters which are used in the system,
- check all time relay and breaker settings,
- close the supply disconnecting device (check the connection from the delivery diagrams),
close all protection switches one at a time and measure for proper voltage

Checking the DCS550 firmware

Nominal values of the converter are available in group 4, check following signals:

- ConvNomVolt (4.04), nominal AC converter voltage in V read from TypeCode (97.01),
- ConvNomCur (4.05), nominal converter DC current in A read from TypeCode (97.01),
- ConvType (4.14), recognized converter type read from TypeCode (97.01),
- QuadrantType (4.15), recognized converter quadrant type read from TypeCode (97.01) or S BlockBrdg2 (97.07),
- MaxBridgeTemp (4.17), maximum bridge temperature in degree centigrade read from TypeCode (97.01) or S MaxBrdgTemp (97.04)
If signals are not correct adapt them, see group 97 in this manual.

Connect DCS550 to PC with DWL

Connect a normal serial cable from the PC COM port to X34 on the drive:

Remove the DCS Control Panel, if present. Depress the locks to remove the cover

Connect the DCS550 via X34 to the PC COM port

Start DWL and check the communication settings:

Example with COM1

Commissioning a DCS550 with the wizard

To launch the commissioning wizard start DWL and press the Wizard button:
Start the wizard in DWL: For basic commissioning press the Start button or select a specific assistant:

Fore more information about the wizard, parameters, faults and alarm press the Help button!

Macros

Macros are pre-programmed parameter sets. During start-up, configure the drive easily without changing individual parameters. The functions of inputs, outputs and control structure are macro dependent. Any macro can be adapted by changing parameters without restrictions. Select macros by means of ApplRestore (99.07) and AppIMacro (99.08) or the macro assistant in DWL. Check the result of the selection in MacroSel (8.10).
The following diagrams show the structure of the macros.

Macro name	Main Contactor	ON I OFF Start/Stop	DI function	Comment	$\begin{aligned} & \text { E-stop } \Rightarrow \text { DI5 } \\ & \text { Reset } \Rightarrow \text { DI6 } \\ & \hline \end{aligned}$
Standard	AC	Static	$\begin{aligned} & \text { Jog1 } \Rightarrow \text { DI1 } \\ & \text { Jog2 } \Rightarrow \text { DI2 } \\ & \text { ExtFault } \Rightarrow \text { DI3 } \\ & \text { ExtAlarm } \Rightarrow \text { DI4 } \end{aligned}$	Hardware I/O control	X
Man/Const	AC	Pulse	$\begin{aligned} & \mathrm{Jog} 1 \Rightarrow \mathrm{DI} 1 \\ & \mathrm{Jog} 2 \Rightarrow \mathrm{DI} 2 \\ & \text { Direction } \Rightarrow \mathrm{DI} 3 \\ & \text { SPC-KP, } \mathrm{KI} \Rightarrow \mathrm{DI} 4 \end{aligned}$	$\begin{aligned} & \text { Hardware I/O control; } \\ & \text { select gain }(\mathrm{KpS} \Leftrightarrow \mathrm{Kps} 2, \\ & \mathrm{TiS} \Leftrightarrow \mathrm{TiS} 2) \end{aligned}$	x
Hand/Auto	AC	Static	$\begin{aligned} & \text { Control } \Rightarrow \mathrm{DI} 2 \\ & \text { Speed reference } \Rightarrow \mathrm{DI} 2 \\ & \text { Direction } \Rightarrow \mathrm{DI} 3 \end{aligned}$	Hardware I/O or field bus control	X
Hand/MotPot	AC	Pulse	$\begin{aligned} & \text { MotPotUp } \Rightarrow \text { DI1 } \\ & \text { MotPotDown } \Rightarrow \text { DI2 } \\ & \text { Direction } \Rightarrow \text { DI } 3 \\ & \text { Speed reference } \Rightarrow \text { DI4 } \end{aligned}$	Hardware I/O control; reference: hardware or MotPot	x
MotPot	AC	Static	$\begin{aligned} & \text { Direction } \Rightarrow \text { DI1 } \\ & \text { MotPotUp } \Rightarrow \text { DI2 } \\ & \text { MotPotDown } \Rightarrow \text { DI3 } \\ & \text { MotPotMin } \Rightarrow \text { DI4 } \end{aligned}$	Hardware I/O control; reference: MotPot	x
TorqCtrl	AC	Static	$\begin{aligned} & \text { OFF2 (Coast stop) } \Rightarrow \text { DI1 } \\ & \text { TorqSel } \Rightarrow \text { DI2 } \\ & \text { ExtFault } \Rightarrow \text { DI3 } \end{aligned}$	Hardware I/O control; speed control or torque reference	x
TorqLimit	AC	Static	$\begin{aligned} & \text { Jog1 } \Rightarrow \text { DI1 } \\ & \text { Jog2 } \Rightarrow \text { DI2 } \\ & \text { ExtFault } \Rightarrow \text { DI3 } \\ & \text { ExtAlarm } \Rightarrow \text { DI4 } \end{aligned}$	Hardware I/O control; torque limit	X
2WreDCcontUS	DC	Static	$\begin{aligned} & \text { Jog1 } \Rightarrow \text { DI1 } \\ & \text { Jog2 } \Rightarrow \text { DI2 } \\ & \text { ExtFault } \Rightarrow \text { DI3 } \\ & \text { MainContAck } \Rightarrow \text { DI4 } \end{aligned}$	Hardware I/O control	X
3WreDCcontUS	DC	Pulse	$\begin{aligned} & \text { FixedSpeed1 } \Rightarrow \text { DI1 } \\ & \text { ExtFault } \Rightarrow \text { DI3 } \\ & \text { MainContAck } \Rightarrow \text { DI4 } \end{aligned}$	Hardware I/O control	x
3WreStandard	AC	Pulse	$\begin{aligned} & \text { FixedSpeed1 } \Rightarrow \text { DI1 } \\ & \text { ExtFault } \Rightarrow \text { DI3 } \\ & \text { ExtAlarm } \Rightarrow \text { DI4 } \end{aligned}$	Hardware I/O control	x

Start-up

Start-up

Start-up

Start-up

Start-up

Start-up

Firmware description

Chapter overview

This chapter describes how to control the DCS550 with standard firmware.

Identification of the firmware versions

The DCS550 is controlled by the SCDS-CON-F. Check the firmware version and type from:

- FirmwareVer (4.01) and
- FirmwareType (4.02).

Start / stop sequences

General

The drive is controlled by control words [MainCtrIWord (7.01) or UsedMCW (7.04)]. The MainStatWord (8.01) provides the handshake and interlocking for the overriding control.
The overriding control uses the MainCtrIWord (7.01) or hardware signals to command the drive. The actual status of the drive is displayed in the MainStatWord (8.01). The marks (e.g. ©) describe the order of the commands according to Profibus standard. Connect the overriding control via:

- serial communication (e.g. Profibus) or
- hardware signals - see CommandSel (10.01) = Local I/O

Start the drive

The start sequence given below is only valid for MainContCtrIMode (21.16) = On.

Attention:

Maintain all signals. On- and Run [MainCtrIWord (7.01) bit 0 and 1] commands are only taken over with their rising edges.

Overriding Control
MainCtrIWord (7.01)

Drive
MainStatWord (8.01)
When the drive is ready to close the main contactor RdyOn state is set
(1) RdyOn = 1; (bit 0)

The overriding control commands On
On = 1; (bit 0) \Rightarrow
(2)

The drive closes the main contactor and the contactors for converter and motor fans. After the mains voltage and all acknowledges are checked and the field current is established, the drive sets state RdyRun.
(3) \quad RdyRun = 1; (bit 1)

The overriding control commands Run
Run = 1; (bit 3) \Rightarrow
(4)

The drive releases the ramp, all references, all controllers and sets state RdyRef
(5) \quad RdyRef = 1; (bit 2)

Now the drive follows the speed or torque references

Note:

To give On and Run at the same time set OnOff1 (10.15) = StartStop (10.16).

Stop the drive

The drive can be stopped in two ways, either by taking away the On command directly which opens all contactors as fast as possible after stopping the drive according to Off1Mode (21.02) or by means of the following sequence:
Overriding Control
MainCtrIWord (7.01)

Drive

MainStatWord (8.01)
The overriding control removes Run
Run = 0; (bit 3) \Rightarrow
(1)

In speed control mode, the drive stops according to StopMode (21.03). In torque control mode, the torque reference is reduced to zero. When zero speed or zero torque is reached the state RdyRef is removed.
(2) $\boldsymbol{\text { RdyRef }}=0$; (bit 2)

The overriding control can keep the On command if the drive has to be started up again
The overriding control removes On
On = 0; (bit 0) \Rightarrow
(3)

All contactors are opened - the fan contactors stay in according to FanDly (21.14) - and the state RdyRun is removed

(4) $\boldsymbol{\text { RdyRun }}=0$; (bit 1)

Besides, in MainStatWord (8.01), the drive's state is shown in DriveStat (8.08). Off2 (Coast Stop) and Off3 (Estop) see chapter Start, Stop and E-stop control.

Excitation

General

The DCS550 is equipped with an OnBoard field exciter its function is explained here.
Field control
The OnBoard field exciter is controlled by means of FldCtrIMode (44.01):

Mode	Functionality	Armature converter
Fix	constant field (no field weakening), EMF controller blocked, default	$2-\mathrm{Q}$ or 4-Q
EMF	field weakening active, EMF controller released	$2-Q$ or 4-Q

Field current monitoring

Field minimum trip

During normal operation, the field current is compared with M1FldMinTrip (30.12). The drive trips with F541 M1FexLowCur [FaultWord3 (9.03) bit 8] if the field current drops below this limit and is still undershot when FldMinTripDly (45.18) is elapsed.

Note:

M1FldMinTrip (30.12) is not valid during field heating. In this case, the trip level is automatically set to 50% of M1FldHeatRef (44.04). The drive trips with F541 M1FexLowCur [FaultWord3 (9.03) bit 8] if 50 \% of M1FldHeatRef (44.04) is still undershot when FldMinTripDly (45.18) is elapsed.

Field Heating

Overview

Field heating (also referred to as "field warming and field economy") is used for a couple of reasons.
Previous generations of DC-drives used voltage-controlled field supplies, meaning that the only thing the field supply could directly control was the field voltage. For DC-motors to maintain optimal torque, it is important to maintain the field current. Ohm's law $\left(U=R^{*} I\right)$ tells us that voltage equals resistance multiplied by current. So as long as resistance remains constant, current is proportional to voltage. However, field resistance increases with temperature. Therefore, a cold motor would have a higher field current than a warm motor, even though voltage remained unchanged. To keep the resistance and thus the current constant, the field was left on to keep it warm. Then the voltage-controlled field supply works just fine.
The new generation of drives, including the OnBoard field exciter used with the DCS550, is current controlled. Thus, the field supply directly controls field current. This means that field heating may no longer be necessary when the DCS550 is employed.
Another reason field heating is used is to keep moisture out of the motor.
Use following parameters to turn on and control field heating:

- FldHeatSel (21.18),
- M1FldHeatRef (44.04)

Modes of operation

There is one mode of operation in which the field current will be at a reduced level, determined by M1FldHeatRef (44.04). With FldHeatSel (21.18) = OnRun the field heating is on as long as On = 1, Run = 0 [UsedMCW (7.04) bit 3], Off2N = 1 and Off3N = 1. In general, field heating will be on as long as the OnOff input is set, the Start/Stop input is not set and no Coast Stop or E-stop is pending.

On [UsedMCW (7.04) bit 0]	Run [UsedMCW (7.04) bit 3]	Off2N [UsedMCW (7.04) bit 1]*	Result
0	x	x	field is turned off
1	0	1	reduced field current**
1	1	1	normal field current
1	$1 \rightarrow 0$	1	normal field current, then reduced** after stop
1	x	$1 \rightarrow 0$	field is turned off as motor coasts to stop and cannot turned back on again as long as Coast Stop is pending

*see Off2 (10.08)
**the field current will be at the level set by means of M1FldHeatRef (44.04) while motor is stopped

E-stop

A pending E-stop - see E Stop (10.09) - switches the field off. It cannot be turned back on again as long as the E-stop is pending. If the E-stop is cleared while in motion, the motor stops according to E StopMode (21.04) and then field and drive will be turned off.

DC-breaker

General

The DC-breaker is used to protect the DC-motor or - in case of too low mains voltage or voltage dips - the generating bridge of the drive from overcurrent. In case of an overcurrent the DC-breaker is forced open by its own tripping spring.
DC-breakers have different control inputs and trip devices:

- an On / Off coil with a typical time delay of 100 to 200 ms ,
- a high speed tripping coil (e.g. Secheron = CID) to trip the DC-breaker within 2 ms from e.g. the drive,
- an internal tripping spring which is released by overcurrent and set mechanically

There are different ways how to control the DC-breaker depending on the available hardware and the customers on / off philosophy. The following is the most common.

AC- and DC-breaker controlled by the drive

$A C$ - and DC-breaker controlled by the drive
In the above example, the drive controls both, the AC- and the DC-breaker. The drive closes and opens both breakers with the command MainContactorOn. The result is checked by means of MainContAck (10.21) and DC BreakAck (10.23). In case the main contactor acknowledge is missing F524 MainContAck [FaultWord2 (9.02) bit 7] is set. In case the DC-breaker acknowledge is missing A103 DC BreakAck [AlarmWord1 (9.06) bit 2] is set, α is forced to 150° and single firing pulses are given.
Trip the DC-breaker actively by the command Trip DC-breaker

Command Trip DC-breaker

Command Trip DC-breaker

The firmware sets the:

- command Trip DC-breaker (continuous signal) [CurCtrIStat1 (6.03) bit 14] and
- command Trip DC-breaker (4 s pulse signal) [CurCtrlStat1 (6.03) bit 15]
by means of
- F512 MainsLowVolt [FaultWord1 (9.01) bit 11] in regenerative mode or
- F502 ArmOverCur [FaultWord1 (9.01) bit 1].

In case a digital output - see group 14 - is assigned to one of the two signals, it is updated immediately after detecting the fault and thus actively tripping the DC-breaker.

Dynamic braking

General

Dynamic braking can stop the drive. The principle is to transfer the power of the machine inertia into a braking resistor. Therefore, the armature circuit has to be switched over from the drive to a braking resistor.
Additionally flux and field current have to be maintained.

Operation

Activation

Dynamic breaking can be activated by all stop modes, in cases of a fault or due to communication breaks:

- Off1Mode (21.02) when UsedMCW (7.04) bit 0 On is set to low,
- StopMode (21.03) when UsedMCW (7.04) bit 3 Run is set to low,
- E StopMode (21.04) when UsedMCW (7.04) bit 2 Off3N is set to low,
- FaultStopMode (30.30) in case of a trip level 4 fault,
- SpeedFbFltMode (30.36) in case of a trip level 3 fault,
- LocalLossCtrl (30.27) when local control is lost,
- ComLossCtrl (30.28) when communication is lost,

In addition dynamic braking can be forced by setting AuxCtrIWord (7.02) bit 5 to high. At the same time, UsedMCW (7.04) bit 3 Run must be set to low.

Application example of dynamic breaking

Function

During dynamic braking the field current is maintained by keeping the field exciter activated. The OnBoard field exciter will be supplied via the main contactor, thus CurCtrIStat1 (6.03) bit 7 stays high
(MainContactorOn) until zero speed is reached.
(1) The activation of dynamic braking immediately sets CurCtrIStat1 (6.03) bit 6 to high (dynamic braking active).
(2) Dynamic braking forces the armature current to zero and opens the DC-breaker by setting CurCtrlStat1 (6.03) bit 14 to high (Trip DC-breaker).
(3) After the armature current is zero and the DC-breaker acknowledge is gone CurCtrIStat1 (6.03) bit 8 is set to high (DynamicBrakingOn). Connect this signal to a digital output (see group 14) and used it to close the brake contactor. As soon as the brake contactor is closed, dynamic braking starts and decreases the speed.
(4) With DynBrakeAck (10.22) it is possible to select a digital input for the brake resistor acknowledge. This input sets A105 DynBrakeAck [AlarmWord1 (9.06) bit 4] as long as the acknowledge is present. Thus the drive cannot be started or re-started while dynamic braking is active, except FlyStart (21.10) = FlyStartDyn.

Deactivation

(5) Dynamic braking is deactivated as soon as zero speed is reached and AuxStatWord (8.02) bit 11 ZeroSpeed is set to high.
In case of dynamic braking with EMF feedback [M1SpeedFbSel (50.03) = EMF] there is no valid information about the motor speed and thus no zero speed information. To prevent an interlocking of the drive after dynamic braking the speed is assumed zero after DynBrakeDly (50.11) is elapsed:

Dynamic braking sequence
For usage of US style DC-breakers see MainContCtrIMode (21.16).

Digital I/O configuration

Chapter overview

This chapter describes the I/O configuration of digital and analog inputs and outputs with different hardware possibilities.

Digital inputs (DI's)

The basic I/O board is the SDCS-CON-F with 8 standard DI's. Extend them by means of one or two RDIO-01 digital I/O extension modules. Thus, the maximum number of DI's is 14.
Select the hardware source by:

1. DIO ExtModule1 (98.03) for DI9 to DI11 and
2. DIO ExtModule2 (98.04) for DI12 to DI14

SDCS-CON-F

On the SDCS-CON-F, the standard DI's are filtered and not isolated.

- Maximum input voltage is $48 \mathrm{~V}_{\mathrm{DC}}$
- Scan time for DI1 to DI6 is 5 ms
- Scan time for DI7 and DI8 is $3.3 \mathrm{~ms} / 2.77 \mathrm{~ms}$ (synchronized with mains frequency)

$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01

All extension Dl's are isolated and filtered. Selectable hardware filtering time is 2 ms or 5 ms to 10 ms .

- Input voltages $24 \mathrm{~V}_{\mathrm{DC}}$ to $250 \mathrm{~V}_{\mathrm{DC}}, 110 \mathrm{~V}_{\mathrm{AC}}$ to $230 \mathrm{~V}_{\mathrm{AC}}$ for more details see RDIO-01 User's Manual
- Scan time for DI9 to DI14 is 5 ms

Configuration

All DI's can be read from DI StatWord (8.05):

bit	DI	configurable	default setting
0	1	yes	-
1	2	yes	MotFanAck (10.06)
2	3	yes	MainContAck (10.21)
3	4	yes	Off2 (10.08)
4	5	yes	E Stop (10.09)
5	6	yes	Reset (10.03)
6	7	yes	OnOff1 (10.15)
7	8	yes	StartStop (10.16)
8	9	yes	-
9	10	yes	-
10	11	yes	-
11	12	no	not selectable
12	13	no	not selectable
13	14	no	not selectable

Configurable = yes:

- The Dl's can be connected to several converter functions and it is possible to invert the DI's - DIIInvert (10.25) to DI11Invert (10.35). In addition the DI's can be used by AP or overriding control.

Configurable = no:

- The DI's can only be used by AP or overriding control.

Configurable DI's are defined by means of following parameters:

- Direction (10.02)
- DynBrakeAck (10.22)
- Reset (10.03)
- MotFanAck (10.06)
- HandAuto (10.07)
- Off2 (10.08)
- E Stop (10.09)
- ParChange (10.10)
- OnOff1 (10.15)
- DC BreakAck (10.23)
- Ref1Mux (11.02)
- Ref2Mux (11.12)
- MotPotUp (11.13)
- MotPotDown (11.14)
- MotPotMin (11.15)
- Par2Select (24.29)
- StartStop (10.16)
- Jog1 (10.17)
- Jog2 (10.18)
- MainContAck (10.21)
- TorqMux (26.05)
- ExtFaultSel (30.31)
- ExtAlarmSel (30.32)
- M1KlixonSel (31.08)

Following restrictions apply:
DI12 to DI14 are only available in the DI StatWord (8.05), thus they can only be used by AP or overriding control.

$1^{\text {st }}$ RDIO-01
X11:1
X11:2
X12:1
X12:2
X12:3
X12:4

DIO ExtModule1 (98.03)

DIO ExtModule2 (98.04)
Structure of DI's

Digital outputs (DO's)

The basic I/O board is the SDCS-CON-F with 4 standard DO's. The $5^{\text {th }}$ standard DO named DO8 is located on the SDCS-PIN-F. Extend them by means of one or two RDIO-01 digital I/O extension modules. Thus, the maximum number of DO's is 9 .
Select the hardware source by:

- DIO ExtModule1 (98.03) for DO9 and DO10
- DIO ExtModule2 (98.04) for DO11 and DO12

SDCS-CON-F

On the SDCS-CON-F, the standard DO's are relay drivers. DO8 is located on the SDCS-PIN-F and an isolated by means of a relay.

- Maximum output value for DO1 to DO4 on the SDCS-CON-F is $50 \mathrm{~mA} / 22 \mathrm{~V}_{\mathrm{DC}}$ at no load
- Maximum output values for DO8 on the SDCS-PIN-F are $3 \mathrm{~A} / 24 \mathrm{~V}_{\mathrm{DC}}, 0.3 \mathrm{~A} / 115 \mathrm{~V}_{\mathrm{DC}} / 230 \mathrm{~V}_{\mathrm{DC}}$ or $3 \mathrm{~A} / 230 \mathrm{~V}_{\mathrm{AC}}$
- Cycle time for DO1 to DO4 and DO8 is 5 ms

$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01

The extension DO's are isolated by means of relays.

- Maximum output values are $5 \mathrm{~A} / 24 \mathrm{~V}_{\mathrm{DC}}, 0.4 \mathrm{~A} / 120 \mathrm{~V}_{\mathrm{DC}}$ or $1250 \mathrm{VA} / 250 \mathrm{~V}_{\mathrm{AC}}$ for more details see RDIO-01 User's Manual
- Cycle time for DO9 to DO12 is 5 ms

Configuration

All DO's can be read from DO StatWord (8.06):

bit	DO	configurable	default setting	
0	1	yes	FansOn; CurCtrlStat1 (6.03)	bit0
1	2	yes	-	
2	3	yes	MainContactorOn; CurCtrIStat1 (6.03)	bit7
3	4	yes	-	
4	-	-	-	
5	-	-	-	
6	-	-	-	
7	8	yes	MainContactorOn; CurCtrIStat1 (6.03)	bit7
8	9	no	not selectable	
9	10	no	not selectable	
10	11	no	not selectable	
11	12	no	not selectable	

Configurable = yes:

- The DO's can be connected to any integer or signed integer of the drive by means of group 14. It is possible to invert the DO's by simply negate DO1Index (14.01) to DO8Index (14.15). In addition the DO's can be used by AP or overriding control if the corresponding DOxIndex (14.xx) is set to zero - see DO CtrIWord (7.05).
Configurable = no:
- The DO's can only be used by AP or overriding control - see DO CtrIWord (7.05).

Note:

DO8 is only available as relay output on the SDCS-PIN-F.

Structure of DO's

Analog I/O configuration

Analog inputs (Al's)

The basic I/O board is the SDCS-CON-F with 4 standard Al's. Extend them by means of one RAIO-01 analog l/O extension module. Thus, the maximum number of Al's is 6 .
Select the hardware source by:

- AIO ExtModule (98.06) for AI5 and AI6

SDCS-CON-F

Hardware setting:

- switching from voltage input to current input by means of jumper S2 and S3

Input range AI1 and AI2 set by parameter:
$- \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset

- $\pm 20 \mathrm{~mA}, 0 \mathrm{~mA}$ to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Input range Al 3 and Al 4 set by parameter:
$- \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset
Resolution:

- 15 bits + sign

Scan time for AI1 and AI2:

- $3.3 \mathrm{~ms} / 2.77 \mathrm{~ms}$ (synchronized with mains frequency)

Scan time for AI3 and AI4:

- 5 ms

RAIO-01

Hardware setting:

- input range and switching from voltage to current by means of a DIP switch, for more details see RAIO-01 User's Manual
Input range Al 5 and Al 6 set by parameter:
$- \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset
- $\pm 20 \mathrm{~mA}, 0 \mathrm{~mA}$ to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Resolution:

- 11 bits + sign

Scan time for AI5 and AI6:

- 10 ms

Additional functions:

- all Al's are galvanically isolated

Configuration

The value of Al1 to Al6 and AITacho can be read from group 5.

Al	configurable	default setting
1	yes	-
2	yes	-
3	yes	-
4	yes	-
5	yes	-
6	yes	-

Configurable = yes:

- The Al's can be connected to several converter functions and it is possible to scale them by means of group 13. In addition the Al's can be read by AP or overriding control.

Configurable Al's are defined by means of following parameters:

- Ref1Sel (11.03)
- Ref2Sel (11.06)
- TorqUsedMaxSel (20.18)
- TorqUsedMinSel (20.19)
- TorqRefA Sel (25.10)
- M1TempSel (31.05)
- CurSel (43.02)

Following restrictions apply:

- the motor temperature measurement via PTC is fixed assigned to AI2, if activated via M1TempSel (31.05)

Scaling

It is possible to scale AI1 to AI6 and AITacho with 3 parameters each:

- the range of each Al is set by means of a jumper - distinguishing between current and voltage - and ConvModeAl1 (13.03) to ConvModeAl6 (13.27)
- +100 \% of the input signal connected to an Al is scaled by means of Al1HighVal (13.01) to Al6HighVal (13.25)
- -100 \% of the input signal connected to an AI is scaled by means of AI1LowVal (13.02) to AI6LowVal (13.26)

Example:

- In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of Al1 should equal $\pm 250 \%$ of TorqRefExt (2.24), set:

1. TorqRefA Sel (25.10) = Al1
2. ConvModeAl1 (13.03) $= \pm \mathbf{1 0 V} \mathrm{Bi}$
3. Al1HighVal (13.01) $=4000 \mathrm{mV}$
4. Al1LowVal $(13.02)=-4000 \mathrm{mV}$

Fixed assigned Al's:
The motor temperature measurement via PTC is fixed assigned to AI2.

RAIO-01	Al5		
X1:1		ConvModeAI5 (13.23)	Al5 Val (5.07)
X1:2	Al6		
X1:3		ConvMode Al6 (13.27)	AI6 Val (5.08)
X1:4			

Al5HighVal (13.21)

AIO ExtModule (98.06)
Structure of Al's

Firmware description

Analog outputs (AO's)

The basic I/O board is the SDCS-CON-F with 3 standard AO's. Two AO's are programmable, the third one is fixed and used to display the actual armature current taken directly from the burden resistors. They can be extended by means of one RAIO-01 analog I/O extension module. Thus, the maximum number of AO's is 5 . The hardware source is selected by:

- AIO ExtModule (98.06) for AO3 and AO4

SDCS-CON-F

Output range AO1 and AO2 set by parameter:

- $\pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset

Output range fixed AO I-act:

- 8 V equals the minimum of 325 \% M1NomCur (99.03) or 230 \% ConvNomCur (4.05) see also lactScaling (4.26)

Resolution:

- 11 bits + sign

Cycle time for AO1 and AO2:

- 5 ms

Cycle time fixed AO I-act:

- directly taken from hardware

RAIO-01

Output range AO 3 and AO 4 set by parameter:

- 0 mA to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Resolution:

- 12 bits

Cycle time for AO3 and AO4:

- 5 ms

Additional functions:

- all AO's are galvanically isolated

Configuration

The value of AO 1 and AO 2 can be read from group 5.

AO	configurable	default setting
1	yes	-
2	yes	-
3	yes	-
4	yes	-
Curr	fixed	not selectable

Configurable $=$ yes:

- The AO's can be connected to any integer or signed integer of the drive by means of group 15. It is possible to invert the AO's by simply negate IndexAO1 (15.01) to IndexAO4 (15.16).
Scaling

It is possible to scale AO 1 to AO 4 with 2 parameters each:

- the range of each AO is set by means of ConvModeAO1 (15.03) to ConvModeAO4 (15.18)
- if the range is set to bipolar or unipolar signals with offset, $\pm 100 \%$ of the input signal connected to an AO is scaled by means of ScaleAO1 (15.06) to ScaleAO4 (15.20)
- If the range is set to unipolar signals without offset, only $+100 \%$ of the input signal connected to an AO is scaled by means of ScaleAO1 (15.06) to ScaleAO4 (15.20). The smallest value is always zero.
- It is possible to invert the AO's by simply negate IndexAO1 (15.01) to IndexAO4 (15.16)

Example:

- In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of AO1 should equal $\pm 250 \%$ of TorqRefUsed (2.13), set:

1. IndexAO1 (15.01) = 213
2. ConvModeAO1 (15.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$
3. ScaleAO1 (15.05) $=4000 \mathrm{mV}$

Structure of AO's

Firmware description

Serial field bus communication

Chapter overview

This chapter describes the serial communication of the DCS550.

CANopen communication with fieldbus adapter RCAN-01

General

This chapter gives additional information using the CANopen adapter RCAN-01 together with the DCS550.

RCAN-01 - DCS550

The CANopen communication with the drive requires the option RCAN-01.

Related documentation

User's Manual CANopen Adapter Module RCAN-01. The quoted page numbers correspond to the User's Manual.
Overriding control configuration
Supported operation mode is PDO21 (see page 43 and 44).

EDS file

The EDS file for RCAN-01 and DCS550 is available. Please ask Your local ABB agent for the newest one concerning the current DCS550 firmware.

Mechanical and electrical installation

If not already done so insert the RCAN-01 into slot 1 of the drive.

Drive configuration

Activate the CANopen adapter by means of CommModule (98.02). Please note that the DCS550 works with the operation mode PDO21 (see page 43 and 44).

Parameter setting example 1 using group 51

Communication via group 51 is using 4 data words in each direction. The following table shows the parameter setting using group 51:

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	
ModuleType (51.01)	CANopen*	
Node ID (51.02)	1**	set node address as required
Baudrate (51.03)	8**	$8=1 \mathrm{Mbits} / \mathrm{s}$
PDO21 Cfg (51.04)	1	$0=$ Configuration via CANopen objects 1 = Configuration via RCAN-01 adapter parameters
RX-PDO21-Enable (51.05)	769	This value has to be calculated with $300 \mathrm{Hex}=768+$ Node ID (51.02). Here $768+1=769$
RX-PDO21-TxType (51.06)	255	255 = Asynchronous (see page 83)
RX-PDO21-1stObj (51.07)	8197	2005 Hex = 8197 = Transparent Control Word (see page 62)
RX-PDO21-1stSubj (51.08)	0	
RX-PDO21-2ndObj (51.09)	8198	2006 Hex = 8198 = Transparent Reference Speed (see page 62)
RX-PDO21-2ndSubj (51.10)	0	
RX-PDO21-3rdObj (51.11)	16409	This value has to be calculated with 4000 Hex $=16384+$ parameter group number.

		E.g. with TorqRefA (25.01) follows $16384+25=16409$ (see page 64)
RX-PDO21-3rdSubj (51.12)	1	This value has to be taken from the parameters index. E.g. with TorqRefA (25.01) follows 1 (see page 64)
RX-PDO21-4thObj (51.13)	16391	This value has to be calculated with 4000 Hex = 16384 + parameter group number. E.g. with AuxCtrIWord (7.02) follows $16384+7=16391$ (see page 64)
RX-PDO21-4thSubj (51.14)	2	This value has to be taken from the parameters index. E.g. with AuxCtrIWord (7.02) follows 2 (see page 64)
TX-PDO21-Enable (51.15)	641	This value has to be calculated with 280 Hex $=640+$ Node ID (51.02). Here $640+1=641$
TX-PDO21-TxType (51.16)	255	255 = Asynchronous (see page 83)
TX-PDO21-EvTime (51.17)	10	$10=10 \mathrm{~ms}$
TX-PDO21-1stObj (51.18)	8199	\qquad page 62)
TX-PDO21-1stSubj (51.19)	0	
TX-PDO21-2ndObj (51.20)	8200	2008 Hex = 8200 = Transparent Actual Speed (see page 62)
TX-PDO21-2ndSubj (51.21)	0	
TX-PDO21-3rdObj (51.22)	16386	This value has to be calculated with 4000 Hex $=16384+$ parameter group number. E.g. with TorqRef2 (2.09) follows $16384+2=16386$ (see page 64)
TX-PDO21-3rdSubj (51.23)	9	This value has to be taken from the parameters index. E.g. with TorqRef2 (2.09) follows 9 (see page 64)
TX-PDO21-4thObj (51.24)	16392	This value has to be calculated with 4000 Hex $=16384+$ parameter group number. E.g. with AuxStatWord (8.02) follows $16384+8=16392$ (see page 64)
TX-PDO21-4thSubj (51.25)	2	This value has to be taken from the parameters index. E.g. with AuxStatWord (8.02) follows 2 (see page 64)
TransparentIProfil (51.26)	1	1 = Transparent
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by CANopen adapter
** The values can be automatically set via the rotary switches of the RCAN-01
Note:
$\pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Further information

RX and TX parameters $51.07, \ldots, 51.14$ and $51.18, \ldots, 51.25$ are directly connected to the desired DCS550 parameters. Take care, that the used parameters are deleted from group 90 and 92 to prevent data trouble.

Parameter setting example 2 using groups 90 and 92

Communication via groups 90 and 92 is using 4 data words in each direction. The following table shows the parameter setting using groups 90 and 92.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ data word from overriding control to drive
DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); output data word 2 (speed reference) $2^{\text {nd }}$ data word from overriding control to drive
DsetXVal3 (90.03)	2501, default	TorqRefA (25.01); output data word 3 (torque reference) $3^{\text {rd }}$ data word from overriding control to drive
DsetXplus2Val1 (90.04)	702, default	AuxCtrIWord (7.02); output data word 4 (auxiliary control word) $4^{\text {th }}$ data word from overriding control to drive
DsetXplus1Val1 (92.01)	801, default	MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ data word from drive to overriding control
DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); input data word 2 (speed actual) $2^{\text {nd }}$ data word from drive to overriding control
DsetXplus1Val3 (92.03)	209, default	TorqRef2 (2.09); input data word 3 (torque reference) $3^{\text {rd }}$ data word from drive to overriding control
DsetXplus3Val1 (92.04)	802, default	AuxStatWord (8.02); input data word 4 (auxiliary status word) $4^{\text {th }}$ data word from drive to overriding control
ModuleType (51.01)	CANopen*	
Node ID (51.02)	1**	set node address as required
Baudrate (51.03)	8**	8 = 1 Mbits/s
PDO21 Cfg (51.04)	1	0 = Configuration via CANopen objects 1 = Configuration via RCAN-01 adapter parameters
RX-PDO21-Enable (51.05)	769	This value has to be calculated with 300 Hex $=768+$ Node ID (51.02). Here $768+1=769$
RX-PDO21-TxType (51.06)	255	255 = Asynchronous (see page 83)
RX-PDO21-1stObj (51.07)	16384	4000 Hex = 16384 = Control Word (see page 63); Data set 1 word 1
RX-PDO21-1stSubj (51.08)	1	1 Hex = 1 = Control Word (see page 63); Data set 1 word 1
RX-PDO21-2ndObj (51.09)	16384	4000 Hex = 16384 = Reference 1 (see page 63); Data set 1 word 2
RX-PDO21-2ndSubj (51.10)	2	2 Hex = 2 = Reference 1 (see page 63); Data set 1 word 2
RX-PDO21-3rdObj (51.11)	16384	4000 Hex = 16384 = Reference 2 (see page 63); Data set 1 word 3
RX-PDO21-3rdSubj (51.12)	3	3 Hex = 3 Reference 2 (see page 63); Data set 1 word 3
RX-PDO21-4thObj (51.13)	16384	4000 Hex = 16384 = Reference 3 (see page 63); Data set 3 word 1
RX-PDO21-4thSubj (51.14)	7	7 Hex = 7 Reference 3 (see page 63); Data set 3 word 1
TX-PDO21-Enable (51.15)	641	This value has to be calculated with 280 Hex $=640+$ Node ID (51.02). Here $640+1=641$
TX-PDO21-TxType (51.16)	255	255 = Asynchronous (see page 83)
TX-PDO21-EvTime (51.17)	10	$10=10 \mathrm{~ms}$

TX-PDO21-1stObj (51.18)	16384	4000 Hex = 16384 = Status Word (see page 63); Data set 2 word 1
TX-PDO21-1stSubj (51.19)	4	4 Hex = 4 = Status Word (see page 63); Data set 2 word 1
TX-PDO21-2ndObj (51.20)	16384	4000 Hex = 16384 = Actual Value 1 (see page 63); Data set 2 word 2
S Hex = 5 = Actual Value 1 (see page 63); Data set 2 word 2		
TX-PDO21-2ndSubj (51.21)	5	4000 Hex = 16384 = Actual Value 2 (see page 63); Data set 2 word 3
TX-PDO21-3rdSubj (51.23)	6	6 Hex = 6 = Actual Value 2 (see page 63); Data set 2 word 3
TX-PDO21-4thObj (51.24)	16384	4000 Hex = 16384 = Actual Value 3 (see page 63); Data set 4 word 1
TX-PDO21-4thSubj (51.25)	10	A Hex = 10 = Actual Value 3 (see page 63); Data set 4 word 1
TransparentIProfil (51.26)	1	1 = Transparent
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by CANopen adapter
** The values can be automatically set via the rotary switches of the RCAN-01

Note:

$\pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Switch on sequence

Please see the example at the end of this chapter.

ControlNet communication with fieldbus adapter RCNA-01

General

This chapter gives additional information using the ControlNet adapter RCNA-01 together with the DCS550.

RCNA-01 - DCS550

The ControlNet communication with the drive requires the option RCNA-01.

Related documentation

User's Manual ControlNet Adapter Module RCNA-01. The quoted page numbers correspond to the User's Manual.

Overriding control configuration

Please refer to the Scanner documentation for information how to configure the system for communication with RCNA-01.

EDS file

The EDS file for RCNA-01 and DCS550 is available. Please ask Your local ABB agent for the newest one concerning the current DCS550 firmware.

Mechanical and electrical installation

If not already done so insert the RCNA-01 into slot 1 of the drive (see page 17).

Drive configuration

Activate the ControlNet adapter by means of CommModule (98.02). Please note that the DCS550 works with the instances User transparent assembly and Vendor specific assembly. The instances Basic speed control and Extended speed control (instance $20 / 70$ and $21 / 71$) are also supported, but with these instances, it is not possible to use the full flexibility of the DCS550. For more information, see User's Manual.
Parameter setting example 1 using ABB Drives assembly
ABB Drives assembly is using 2 data words in each direction. The following table shows the parameter setting using this profile.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	
DsetXVal1 (90.01) 701, default MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ data word from overriding control to drive DsetXVal2 (90.02) 2301, default SpeedRef (23.01); output data word 2 (speed reference) $2^{\text {nd }}$ data word from overriding control to drive DsetXplus1Val1 (92.01) 801, default MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ data word from drive to overriding control DsetXplus1Val2 (92.02) 104, default MotSpeed (1.04); input data word 2 (speed actual) $2^{\text {nd }}$ data word from drive to overriding control		

ModuleType (51.01)	CONTROLNET*	
Module macid (51.02)	$4^{* *}$	set node address as required
Module baud rate (51.03)	$2^{* *}$	$2=500 \mathrm{kBits} / \mathrm{s}$
HW/SW option (51.04)	0	$0=$ Hardware $1=$ Software
Stop function (51.05)	NA	not applicable when using ABB Drives assembly

Output instance (51.06)	100	100 = ABB Drives assembly
Input instance (51.07)	101	$101=$ ABB Drives assembly
Output I/O par 1 (51.08) to Input I/O par 9 (51.25)	NA	not applicable when using ABB Drives assembly
VSA I/O size (51.26)	NA	not applicable when using ABB Drives assembly
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) $=$ RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by ControlNet adapter.
** If HW/SW option (51.04) $=0$ (Hardware), the values are automatically set via the rotary switches of the RCNA-01.

Note:

$\pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Parameter setting example 2 using Vendor specific assembly

Vendor specific assembly can run with up to 9 data words in each direction. The following table shows the parameter setting using this profile.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

ModuleType (51.01)	CONTROLNET *	
Module macid (51.02)	$4^{* *}$	set node address as required
Module baud rate (51.03)	5	$5=5$ Mbits/s
HW/SW option (51.04)	0	$0=$ Hardware $1=$ Software
Stop function (51.05)	NA	not applicable when using Vendor specific assembly
Output instance (51.06)	102	$102=$ Vendor specific assembly
Input instance (51.07)	103	103 = Vendor specific assembly
Output I/O par 1 (51.08) to Input I/O par 9 (51.25)	$1-18$	Set these values according table: Setting of parameter groups 51, 90 and 92 depending on desired data words and according to the desired numbers of data words
VSA I/O size (51.26)	Defines the length of the Vendor specific assembly in pairs of data words. E.g. a parameter value of 4 means 4 word as output and 4 words as input.	
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) $=$ RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by ControlNet adapter
** If HW/SW option (51.04) $=0$ (Hardware), the values are automatically set via the rotary switches of the RCNA-01
Note:
$\pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Setting of parameter groups 51, 90 and 92

Parameter group 51				$\xrightarrow{\begin{array}{c} \text { Direction } \\ \text { PLC<->Drive } \end{array}}$	ABB Datasets	Parameter group 90 and 92			
name		set value					name		value
51,08	Output I/O par 1	=	1*		1,1	90,01	DsetXVal1	=	701
51,09	Output I/O par 2	=	2*	$10 \square$	1,2	90,02	DsetXVal2	=	2301
51,10	Output I/O par 3	=	3	$10 \square$	1,3	90,03	DsetXVal3	=	2501
51,11	Output I/O par 4	=	7	10	3,1	90,04	DsetXplus2Val1	=	702
51,12	Input I/O par 1	=	4*	\longleftarrow	2,1	92,01	DsetXplus1Val1	=	801
51,13	Input I/O par 2	=	5*	$\longleftarrow \sim$	2,2	92,02	DsetXplus1Val2	=	104
51,14	Input I/O par 3	=	6	$\longleftarrow \sim$	2,3	92,03	DsetXplus1Val3	=	209
51,15	Input I/O par 4	=	10	\longleftarrow	4,1	92,04	DsetXplus3Val1	=	802
51,16	Output I/O par 5	=	8	$10 \sim$	3,2	90,05	DsetXplus2Val2	=	703
51,17	Output I/O par 6	=	9	$10 \square$	3,3	90,06	DsetXplus2Val3	=	0
51,18	Output I/O par 7	=	13	$\xrightarrow{0}$	5,1	90,07	DsetXplus4Val1	=	0
51,19	Output I/O par 8	=	14	$10 \square$	5,2	90,08	DsetXplus4Val2	=	0
51,20	Output I/O par 9	=	15	$10 \square$	5,3	90,09	DsetXplus4Val3	=	0
51,21	Input I/O par 5	=	11	$\longleftarrow \sim$	4,2	92,05	DsetXplus3Val2	=	101
51,22	Input I/O par 6	=	12	$\longleftarrow \sim$	4,3	92,06	DsetXplus3Val3	=	108
51,23	Input I/O par 7	=	16	$\longleftarrow \sim$	6,1	92,07	DsetXplus5Val1	=	901
51,24	Input I/O par 8	=	17	$\longleftarrow \sim$	6,2	92,08	DsetXplus5Val2	=	902

*For proper communication shown values have to be used

Further information

Output and input parameters $51.08, \ldots, 51.25$ can also be connected directly to the desired DCS550 parameters. In this case please take care that the RCNA-01 adapter gets the changed values and also take care, that the used parameters are deleted from group 90 to prevent data trouble.

Switch on sequence

Please see the example at the end of this chapter.

DeviceNet communication with fieldbus adapter RDNA-01

General

This chapter gives additional information using the DeviceNet adapter RDNA-01 together with the DCS550.

RDNA-01 - DCS550

The DeviceNet communication with the drive requires the option RDNA-01.

Related documentation

User's Manual DeviceNet Adapter Module RDNA-01. The quoted page numbers correspond to the User's Manual.

Overriding control configuration

Supported assemblies with DCS550 are ABB Drives assembly (Output instance: 100; Input instance: 101) and User specific assembly (Output instance: 102; Input instance: 103) (see page 35). The assemblies Basic speed control and Extended speed control (20/70 and $21 / 71$) are also supported.

EDS file

The EDS file for RDNA-01 and DCS550 is available. Please ask Your local ABB agent for the newest one concerning the current DCS550 firmware.

Mechanical and electrical installation

If not already done so insert the RDNA-01 into slot 1 of the drive (see page 21).
Drive configuration
Activate the DeviceNet adapter by means of CommModule (98.02). Please note that the DCS550 works with the instances ABB Drives assembly and User specific assembly. The instances Basic speed control and Extended speed control (20 / 70 and 21 / 71) are also supported. With these instances, it is not possible to use the full flexibility of the DCS550. For more information, see User's Manual.

Parameter setting example 1 using ABB Drives assembly

ABB Drives assembly is using 2 data words in each direction. The following table shows the parameter setting using this profile.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ overriding control to drive			
DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); oprom output data word 2 (speed reference) $2^{\text {nd }}$ data word from overriding control to drive			
DsetXplus1Val1 (92.01)	801, default	MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ overriding control			
DsetXplus1Val2 word from drive to			$	$	MotSpeed (1.04);
:---					
input data word 2 (speed actual) $2^{\text {nd }}$ data word from drive					
to overriding control					

ModuleType (51.01)	DEVICENET*	
Module macid (51.02)	$4^{* *}$	set node address as required
Module baud rate (51.03)	$2^{* *}$	$2=500 \mathrm{kBits} / \mathrm{s}$
HW/SW option (51.04)	0	$0=$ Hardware $1=$ Software

[^2]| Stop function (51.05) | NA | not applicable when using ABB Drives assembly |
| :--- | :--- | :--- |
| Output instance (51.06) | 100 | $100=$ ABB Drives assembly |
| Input instance (51.07) | 101 | $101=$ ABB Drives assembly |
| Output I/O par 1 (51.08) to Input
 I/O par 9 (51.25) | not applicable when using ABB Drives assembly | |
| VSA I/O size (51.26) | NA | not applicable when using ABB Drives assembly |
| FBA PAR REFRESH (51.27) | DONE, default | If a fieldbus parameter is changed its new value takes
 effect only upon setting FBA PAR REFRESH $(51.27)=$
 RESET or at the next power up of the fieldbus adapter. |

* Read-only or automatically detected by DeviceNet adapter
** If HW/SW option (51.04) = 0 (Hardware), the values are automatically set via DIP switches of the RDNA-01 Note:
$\pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Parameter setting example 2 using User specific assembly

User specific assembly can run with up to 9 data words in each direction. The following table shows the parameter setting using this profile.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

ModuleType (51.01)	DEVICENET*						
Module macid (51.02)	$4^{* *}$	set node address as required					
Module baud rate (51.03)	$2^{* *}$	$2=500 \mathrm{kBits} / \mathrm{s}$					
HW/SW option (51.04)	0	$0=$ Hardware $1=$ Software					
Stop function (51.05)	NA	not applicable when using User specific assembly					
Output instance (51.06)	102	$102=$ User specific assembly	$	$	Input instance (51.07)	103	Set these values according table: Setting of parameter groups 51, 90 and 92 depending on desired data words and according to the desired numbers of data words
:---	:---	:---					
Output I/O par 1 (51.08) to Input I/ (51.25)	Defines the length of the User specific assembly in pairs of data words. E.g. a parameter value of 4 means 4 word as output and 4 words as input.						
VSA I/O size (51.26)	$1-9$	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) $=$ RESET or at the next power up of the fieldbus adapter.					

* Read-only or automatically detected by DeviceNet adapter
** If HW/SW option (51.04) $=0$ (Hardware), the values are automatically set via DIP switches of the RDNA-01

Note:

$\pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Setting of parameter groups 51, 90 and 92

Parameter group 51				$\xrightarrow{\begin{array}{c} \text { Direction } \\ \text { PLCC-->Drive } \end{array}}$	$A B B$ Datasets	Parameter group 90 and 92			
name		set value					name		value
51,08	Output I/O par 1	$=$	1*		1,1	90,01	DsetXVal1	=	701
51,09	Output I/O par 2	=	2*	$10 \longmapsto$	1,2	90,02	DsetXVal2	=	2301
51,10	Output I/O par 3	=	3	$10 \square$	1,3	90,03	DsetXVal3	=	2501
51,11	Output I/O par 4	=	7	$10 \longmapsto$	3,1	90,04	DsetXplus2Val1	=	702
51,12	Input I/O par 1	=	4*	$\longleftarrow \sim$	2,1	92,01	DsetXplus1Val1	=	801
51,13	Input I/O par 2	=	5*	\longleftarrow	2,2	92,02	DsetXplus1Val2	=	104
51,14	Input I/O par 3	=	6	$\longleftarrow \sim$	2,3	92,03	DsetXplus1Val3	=	209
51,15	Input I/O par 4	=	10	\longleftarrow	4,1	92,04	DsetXplus3Val1	=	802
51,16	Output I/O par 5	=	8	$10 \sim$	3,2	90,05	DsetXplus2Val2	=	703
51,17	Output I/O par 6	=	9	\cdots	3,3	90,06	DsetXplus2Val3	=	0
51,18	Output I/O par 7	=	13	$10 \longmapsto$	5,1	90,07	DsetXplus4Val1	=	0
51,19	Output I/O par 8	=	14	\cdots	5,2	90,08	DsetXplus4Val2	=	0
51,20	Output I/O par 9	=	15	$10 \sim$	5,3	90,09	DsetXplus4Val3	=	0
51,21	Input I/O par 5	=	11	$<$	4,2	92,05	DsetXplus3Val2	=	101
51,22	Input I/O par 6	=	12	\Longleftarrow	4,3	92,06	DsetXplus3Val3	=	108
51,23	Input I/O par 7	=	16	\longleftarrow	6,1	92,07	DsetXplus5Val1	=	901
51,24	Input I/O par 8	=	17	\Longleftarrow	6,2	92,08	DsetXplus5Val2	=	902

*For proper communication shown values have to be used

Further information

Output and input parameters $51.08, \ldots, 51.25$ can also be connected directly to the desired DCS550 parameters. In this case, please take care that the RDNA-01 adapter gets the changed values and take care, that the used parameters are deleted from group 90 to prevent data trouble.

Switch on sequence

Please see the example at the end of this chapter.

Ethernet/IP communication with fieldbus adapter RETA-01

General

This chapter gives additional information using the Ethernet adapter RETA-01 together with the DCS550.

RETA-01 - DCS550

The Ethernet/IP communication with the drive requires the option RETA-01.

Related documentation

User's Manual Ethernet Adapter Module RETA-01. The quoted page numbers correspond to the User's Manual.

EDS file

The EDS file for RETA-01 and DCS550 is available. Please ask Your local ABB agent for the newest one concerning the current DCS550 firmware.

Mechanical and electrical installation

If not already done so insert RETA-01 into slot 1 of the drive.

Drive configuration

Activate the Ethernet adapter by means of CommModule (98.02). Please note that the DCS550 works with the instances 102 / 103, if Protocol (51.16) is set to 2 (Ethernet/IP ABB Drives communication profile). The instances 100 / 101, 20 / 70 and 21 / 71 are also supported, if Protocol (51.16) is set to 1 (Ethernet/IP AC/DC communication profile). With these instances, it is not possible to use the full flexibility of the DCS550. For more information, see User's Manual.
Parameter setting example using Ethernet/IP ABB Drives communication profile
Ethernet/IP ABB Drives communication profile uses up to 4 data words in each direction by default. The internal connection from and to the DCS550 has to be done by means of parameter group 51.
Ethernet/IP ABB Drives communication profile uses up to 12 data words in each direction. The configuration has to be done via fieldbus link configuration using Vendor Specific Drive I/O Object (Class 91h).

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	
DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ overriding control to drive
DsetXVal2 word from		
DsetXplus1Val1 (92.01)	801, default	SpeedRef (23.01); output data word 2 (speed reference) $2^{\text {nd }}$ overriding control to drive
MainStatWord (8.01); word from input data word 1 (status word) $1^{\text {st }}$ overriding control		
DsetXplus1Val2 word from drive to		

ModuleType (51.01)	ETHERNET TCP*	
Comm rate (51.02)	0	Auto-negotiate; automatic, set baud rate as required
DHCP (51.03)	0	DHCP disabled; IP address setting from following parameters

IP address 1 (51.04)	192**	e.g. IP address: 192.168.0.1
IP address 2 (51.05)	168**	
IP address 3 (51.06)	0**	
IP address 4 (51.07)	1**	
Subnet mask 1 (51.08)	255	$\begin{aligned} & \text { e.g. subnet mask: } \\ & 255.255 .255 .0 \end{aligned}$
Subnet mask 2 (51.09)	255	
Subnet mask 3 (51.10)	255	
Subnet mask 4 (51.11)	0	
GW address 1 (51.12)	0	e.g. gateway address: 0.0.0.0
GW address 2 (51.13)	0	
GW address 3 (51.14)	0	
GW address 4 (51.15)	0	
Protocol (51.16)	2	1 = Ethernet/IP AC/DC communication profile 2 = Ethernet/IP ABB Drives communication profile
Modbus timeout (51.17)	22	$\begin{aligned} & 0=\text { no monitoring } \\ & 1=100 \mathrm{~ms} \\ & 22=2200 \mathrm{~ms} \end{aligned}$
Stop function (51.18)	0	0 = Ramp stop
Output 1 (51.19)	1	data word 1; setting via parameter 90.01
Output 2 (51.20)	2	data word 2; setting via parameter 90.02
Output 3 (51.21)	3	data word 3; setting via parameter 90.03
Output 4 (51.22)	7	data word 4; setting via parameter 90.04
Input 1 (51.23)	4	data word 1; setting via parameter 92.01
Input 2 (51.24)	5	data word 2; setting via parameter 92.02
Input 3 (51.25)	6	data word 3; setting via parameter 92.03
Input 4 (51.26)	10	data word 4; setting via parameter 92.04
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by Ethernet adapter
** If all DIP switches (S1) are OFF; the IP address is set according to parameters 51.04, .., 51.07. In case at least one DIP switch is on, the last byte of the IP address [IP address 4 (51.07)] is set according to the DIP switches (see page 42).

Note:

$\pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Up to 4 data words

The content of Input/Output 1 to 4 can be configured with the RETA-01 configuration parameters. Please see table RETA-01 Ethernet/IP configuration parameters, which contains all the necessary basic settings.

Up to 10 data words

The DCS550 supports up to 10 data words in each direction. The first configuration of the RETA-01 adapter has to be done according to the table RETA-01 Ethernet/IP configuration parameters, which contains all the necessary basic settings.
The additional desired data words have to be configured via the fieldbus network using Vendor Specific Drive I/O Object (Class 91h). The adapter will automatically save the configuration.
The table RETA-01 Ethernet/IP configuration parameters shows the index configuration numbers and the corresponding data words (via data sets).
Please note: The grayed index is also addressed via group 51, please set the outputs and inputs to the same configuration numbers as shown in the table RETA-01 Ethernet/IP configuration parameters.
Example:

Task: The $5^{\text {th }}$ data word of the telegram (index05) should be connected to AuxCtrIWord (7.03). To do:AuxCtrIWord (7.03) is the default content of DsetXplus2Val2 (90.05). The corresponding index configuration number of DsetXplus2Val2 (90.05) is 8 . Therefore, the configuration has to be done using the following values in the IP address (all values are in hex):

service	$\mathbf{0 x 1 0}$	(write single)	class	$\mathbf{0 x 9 1}$	(drive IO map function)
instance	$\mathbf{0 x 0 1}$	(output)	attribute	$\mathbf{5}$	(index05)
data	$\mathbf{0 8 0 0}$	(2 char hex value)			

RETA-01 Ethernet/IP configuration parameters
After configuration, the packed telegram is defined:

Switch on sequence

Please see the example at the end of this chapter.

Modbus (RTU) communication with fieldbus adapter RMBA-01

General

This chapter gives additional information using the Modbus adapter RMBA-01 together with the DCS550.

RMBA-01 - DCS550

The Modbus communication with the drive requires the option RMBA-01. The protocol Modbus RTU (Remote Terminal Unit using serial communication) is supported.
Related documentation
User's Manual Modbus Adapter Module RMBA-01. The quoted page numbers correspond to the User's Manual.

Mechanical and electrical installation

If not already done so insert RMBA-01 into a slot of the drive. Slot 1 has to be used, if the Modbus should control the drive.

Drive configuration

The Modbus adapter is activated by means of CommModule (98.02) and ModBusModule2 (98.08). The serial communication parameters of the RMBA-01 adapter have to be set by means of group 52 . Up to 10 data words in each direction are possible.

Parameter setting example controlling a drive

In data set mode (cyclic communication), the drive will be controlled from the overriding control using the Modbus. Up to 10 data words in each direction are possible. The following table shows the parameter settings.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Modbus	
ModBusModule2 (98.08)	Slot1	

StationNumber (52.01)	$1, \ldots, 247$	desired station number
BaudRate (52.02)	5	$5=9600$ Baud
Parity (52.03)	4	$4=$ Even

DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ overriding control to drive (40001 => data word 1.1)
DsetXVal2 (90.02)	2301, default from	
SpeedRef (23.01); output data word 2 (speed reference) $2^{\text {nd }}$ overriding control to drive (40002 => data word 1.2)		
DsetXVal3 (90.03)	2501, default	TorqRefA (25.01); output data word 3 (torque reference) $3^{\text {rd }}$ overriding control to drive (40003 => data word 1.3)
up to, ...,	0, default	not connected; output data word 10 (not connected) $10^{\text {th }}$ data word from overriding control to drive (40019 <= data word 7.1)
DsetXplus6Val1 (90.10)	MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ data word from drive to overriding control (40004 <= data word 2.1)	

Communication

DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); input data word 2 (speed actual) $2^{\text {nd }}$ data word from drive to overriding control (40005 <= data word 2.2)
DsetXplus1Val3 (92.03)	209, default	TorqRef2 (2.09); input data word 3 (torque reference) $3^{\text {rd }}$ data word from drive to overriding control (40006 <= data word 2.3)
up to, ...,		
DsetXplus7Val1 (92.10)	904, default	Faultword4 (9.04); input data word 10 (fault word 4) $10^{\text {th }}$ data word from drive to overriding control (40022 <= data word 8.1)

Notes:

- New settings of group 52 take effect only after the next power up of the adapter.
$- \pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Setting of PLC, parameter groups 90 and 92

Set in PLC	$\begin{gathered} \text { Direction } \\ \text { PLC }<->\text { Drive } \end{gathered}$	ABBDatasets	Parameter group 90 and 92			
				name		value
40001	ω	1.1	90.01	DsetXVal1	=	701
40002	\Longleftrightarrow	1,2	90.02	DsetXVal2	=	2301
40003	\cdots	1,3	90.03	DsetXVal3	=	2501
40004	$<\square$	2,1	92.01	DsetXplus1Val1	=	801
40005	\sim	2,2	92.02	DsetXplus1Val2	=	104
40006	$\longleftarrow \sim$	2,3	92.03	DsetXplus1Val3	=	209
40007	\Longleftrightarrow	3,1	90.04	DsetXplus2Val1	=	702
40008	\longrightarrow	3,2	90.05	DsetXplus2Val2	=	703
40009	\Longrightarrow	3,3	90.06	DsetXplus2Val3	=	0
40010	$\longleftarrow \sim$	4,1	92.04	DsetXplus3Val1	=	802
40011	$\sim \square$	4,2	92.05	DsetXplus3Val2	=	101
40012	\longleftrightarrow	4,3	92.06	DsetXplus3val3	=	108
40013	\longrightarrow	5.1	90.07	DsetXplus4Val1	=	0
40014	\cdots	5,2	90.08	DsetXplus4Val2	=	0
40015	\Longrightarrow	5,3	90.09	DsetXplus4Val3	=	0
40016	\rightleftarrows	6,1	92.07	DsetXplus5Val1	=	901
40017	$<\square$	6,2	92.08	DsetXplus5Val2	=	902
40018	\longleftrightarrow	6,3	92.09	DsetXplus5Val3	=	903
40019	\longrightarrow	7.1	90.10	DsetXplus6val1	=	0
40022	$\longleftarrow \sim$	8,1	92.10	DsetXplus7Val1	=	904

Setting of PLC, parameter groups 90 and 92 depending on desired data words

Switch on sequence

Please see the example at the end of this chapter.

Modbus/TCP communication with fieldbus adapter RETA-01

General

This chapter gives additional information using the Ethernet adapter RETA-01 together with the DCS550.

RETA-01 - DCS550

The Modbus/TCP communication with the drive requires the option RETA-01. The protocol Modbus TCP (Ethernet) is supported.
Related documentation
User's Manual Ethernet Adapter Module RETA-01. The quoted page numbers correspond to the User's Manual.

Mechanical and electrical installation

If not already done so insert RETA-01 into slot 1 of the drive.

Drive configuration

Activate the Ethernet adapter by means of CommModule (98.02). Please note that the DCS550 works with Modbus/TCP, if Protocol (51.16) is set to 0 (Modbus/TCP).
Parameter setting example using Modbus/TCP
Modbus/TCP is using 4 data words in each direction. The following table shows the parameter setting using this protocol.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrlWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	
DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ overriding control to drive
DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); output data word 2 (speed reference) $2^{\text {nd }}$ data word from overriding control to drive
DsetXplus1Val1 (92.01)	801, default	MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ data word from drive to overriding control
DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); input data word 2 (speed actual) $2^{\text {nd }}$ data word from drive to overriding control

ModuleType (51.01)	ETHERNET TCP*	
Comm rate (51.02)	0	Auto-negotiate; automatic, set baud rate as required
DHCP (51.03)	0	DHCP disabled; IP address setting from following parameters
IP address 1 (51.04)	$192^{* *}$	e.g. IP address: 192.168 .0 .1
IP address 2 (51.05)	$168^{* *}$	
IP address 3 (51.06)	$0^{* *}$	$1^{* *}$
IP address 4 (51.07)	255	e.g. subnet mask: Subnet mask 1 (51.08)
Subnet mask 2 (51.09)	255	
Subnet mask 3 (51.10)	255	
Subnet mask 4 (51.11)	0	

Communication

GW address 1 (51.12)	0	e.g. gateway address: 0.0.0.0
GW address 2 (51.13)	0	
GW address 3 (51.14)	0	
GW address 4 (51.15)	0	
Protocol (51.16)	0	0 = Modbus/TCP
Modbus timeout (51.17)	22	$\begin{aligned} & 0=\text { no monitoring } \\ & 1=100 \mathrm{~ms} \\ & 22=2200 \mathrm{~ms} \end{aligned}$
Stop function (51.18)	NA	not applicable when using Modbus/TCP
Output 1 (51.19)	1	data word 1; setting via parameter 90.01
Output 2 (51.20)	2	data word 2; setting via parameter 90.02
Output 3 (51.21)	3	data word 3; setting via parameter 90.03
Output 4 (51.22)	7	data word 4; setting via parameter 90.04
Input 1 (51.23)	4	data word 1; setting via parameter 92.01
Input 2 (51.24)	5	data word 2; setting via parameter 92.02
Input 3 (51.25)	6	data word 3; setting via parameter 92.03
Input 4 (51.26)	10	data word 4; setting via parameter 92.04
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by Ethernet adapter
** If all DIP switches (S1) are OFF; the IP address is set according to parameters $51.04, \ldots, 51.07$. In case at least one DIP switch is on, the last byte of the IP address [IP address 4 (51.07)] is set according to the DIP switches (see page 42).
Note:
$\pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Switch on sequence

Please see the example at the end of this chapter.

Profibus communication with fieldbus adapter RPBA-01

General

This chapter gives additional information using the Profibus adapter RPBA-01 together with the DCS550.

RPBA-01 - DCS550

The Profibus communication with the drive requires the option RPBA-01.

Related documentation

User's Manual PROFIBUS DP Adapter Module RPBA-01. The quoted page numbers correspond to the User's Manual.

Overriding control configuration

Supported operation mode is VENDOR SPECIFIC for ABB Drives (see page 19 and 20). The RPBA-01 uses data consistent communication, meaning that the whole data frame is transmitted during a single program cycle. Some overriding controls handle this internally, but others must be programmed to transmit data consistent telegrams.

Mechanical and electrical installation

If not already done so insert RPBA-01 into slot 1 of the drive (see page 21).

Drive configuration

Activate the Profibus adapter by means of CommModule (98.02) (see page 22). Please note that the DCS550 works only with the ABB Drives profile.

Parameter setting example 1 using PPO Type 1

ABB Drives profile (Vendor-specific) with PPO Type 1 (DP-V0) (see page 25). The first two data words (PZD1 OUT, PZD2 OUT) from the overriding control to the drive are fixed connected as control word and speed reference at the Profibus side and cannot be changed. The first two data words (PZD1 IN, PZD2 IN) from the drive to the overriding control are fixed connected as status word and speed actual at the Profibus side and cannot be changed.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

DsetXVal1 (90.01)	701, default	MainCtr/Word (7.01); PZD1 OUT (control word) $1^{\text {st }}$ data word from overriding control to drive
DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); PZD2 OUT (speed reference) $2^{\text {nd }}$ data word from overriding control to drive
DsetXplus1Val1 (92.01)	801, default	MainStatWord (8.01); PZD1 IN (status word) $1^{\text {st }}$ data word from drive to overriding control
DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); PZD2 IN (speed actual) $2^{\text {nd }}$ data word from drive to overriding control

ModuleType (51.01)	PROFIBUS DP*	
Node address (51.02)	4	set node address as required
Baud rate (51.03)	1500^{*}	
PPO-type (51.04)	PPO1*	
\ldots	0	
DP Mode (51.21)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) $=$ RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by Profibus adapter

Note:

$\pm 20,000$ speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29).

Parameter setting example 2 using PPO types 2, 4 and 5

The first two data words (PZD1 OUT, PZD2 OUT) from the overriding control to the drive are fixed connected as control word and speed reference at the Profibus side and cannot be changed. The first two data words (PZD1 IN, PZD2 IN) from the drive to the overriding control are fixed connected as status word and speed actual at the Profibus side and cannot be changed.
Further data words are to be connected to the desired parameters respectively signals by means of parameters in group 51:

- PZD3 OUT (51.05) means $3^{\text {rd }}$ data word from overriding control to drive,
- PZD3 IN (51.06) means $3^{\text {rd }}$ data word from Drive to overriding control to
- PZD10 OUT (51.18) means $10^{\text {th }}$ data word from overriding control to drive,
- PZD10 IN (51.19) means $10^{\text {th }}$ data word from drive to overriding control or by means of setting parameters in group 90 and group 92.

Communication via group 51

E.g. the $3^{\text {rd }}$ data word from overriding control to drive should be the torque reference and the $3^{\text {rd }}$ data word from the drive to the overriding control should be the actual motor torque. Therefore, following settings have to be made:

- PZD3 OUT (51.05) $=2501$ [TorqRefA (25.01)] and
- PZD3 IN (51.06) = 107 [MotTorqFilt (1.07)].

After changing parameters in group 51 please do not forget to reset the RPBA-01 adapter by means of FBA PAR REFRESH (51.27) = RESET. Now the corresponding parameters in group 90 and group 92 are disabled.

Attention:

Make sure, that the used parameters, like TorqRefA (25.01) are removed from groups 90 and 91.

Setting of data words using only group 51 or using group 90 and group 92

Communication via group 90 and group 92

The other possibility is to connect via group 90 and group 92. Again, the $3^{\text {rd }}$ data word from overriding control to drive should be the torque reference and the $3^{\text {rd }}$ data word from the drive to the overriding control should be the actual motor torque. Therefore, following settings have to be made (values see table below):

- PZD3 OUT (51.05) $=3$ and
- PZD3 IN (51.06) $=6$.

After changing parameters in group 51 please do not forget to reset the RPBA-01 adapter by means of FBA PAR REFRESH (51.27) = RESET. Now the corresponding parameters in group 90 and group 92 are enabled. Following settings have to be made now:

- DsetXVal3 (90.03) = 2501 [TorqRefA (25.01)] and
- DsetXplus1Val3 (92.03) $=107$ [MotTorqFilt (1.07)].

					$\begin{gathered} \text { Direction } \\ \text { PLC } \propto->\text { Drive } \end{gathered}$	$\begin{gathered} \text { ABB } \\ \text { Datasets } \end{gathered}$	Parameter group 90 and 92\vdotsname		def. value	
			name	set value						
$\left\|\begin{array}{l} n \\ 0 \\ 0 \\ 0 \end{array}\right\|$		fixed connection			\cdots	1,1	90,01	DsetXVal1		701
		fixed connection			\longleftrightarrow	2,1	92,01	DsetXplus1Val1		801
		fixed connection			\Longrightarrow	1,2	90,02	DsetXVal2		2301
		fixed connection			\longleftarrow	22	92,02	DsetXplus1Val2		104
		51,05	PZD3 OUT	$=3$	\cdots	1,3	90,03:	DsetXVal3	=	2501
		51,06	PZD3 IN	$=6$	$\longleftarrow \sim$	2,3	92,03	DsetXplus1Val3	=	209
		51,07	PZD4 OUT	7	\Longrightarrow	3,1	90,04	DsetXplus2Val1	=	702
		51,08	PZD4 ${ }^{\text {N }}$	$=10$	\rightleftarrows	4.1	92,04	DsetXplus3Val1		802
		51,09	PZD5 OUT	$=8$	m	32	90,05	DsetXplus2Val2		703
		51,10	PZD5 ${ }^{\text {N }}$	$=11$	\longleftrightarrow	42	92,05	DsetXplus3val2		101
		51,11	PZD6 0UT	$=9$	\cdots	3,3	90,06	DsetXplus2Val3	=	0
		51,12	PZD6 IN	$=12$	\rightleftarrows	4,3	92,06	DsetXplus3Val3	=	108
		51,13	PZD7 OUT	$=13$	\Longrightarrow	5,1	90,07	DsetXplus4val1	=	0
		51,14	PZD7 ${ }^{\text {N }}$	$=16$	\longleftrightarrow	6,1	92,07	DsetXplus5Val1	=	901
		51,15	PZD8 OUT	= 14	ω	5,2	90,08	DsetXplus4Val2	=	0
		51,16	PZD8 ${ }^{\text {N }}$	$=17$	\rightleftarrows	62	92,08	DsetXplus5Val2	=	902
		51,17	PZD9 0UT	$=15$	\cdots	5,3	90,09	DsetXplus4val3	=	0
		51,18	PZD9 IN	$=18$	\longleftrightarrow	6,3	92,09	DsetXplus5val3	=	903
		51,19	PZD10 OUT	$=19$	ω	7,1	90,10:	DsetXplus6Val1	=	0
		51,20	PZD10 IN	$=22$	\rightleftharpoons	8,1	92,10	DsetXplus7Val1	=	904

Setting of data words using group 90 and group 92

ProfiNet communication with fieldbus adapter RETA-02

Switch on sequence

Bit	$15 . .11$			⿹ㅡㄹ 듣 으 08	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{0}} \\ & 0 \\ & \mathbb{Q} \\ & \widetilde{\sim} \\ & 07 \end{aligned}$						$\left\|\begin{array}{c} \underset{2}{2} \\ \mathbb{4} \\ 0 \\ 02 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{z} \\ \underset{\sim}{4} \\ 0 \\ 01 \end{gathered}\right.$	O-	Dec.	Hex.
Reset		1	x	x	1	x	x	x		x	x	x	x	1270	04F6
Off (before On)		1	0	0	0	x	x	x		0	1	1	0	1142	0476
On (main cont. On)		1	0	0	0	x	x	x		0	1	1	1	1143	0477
Run (with reference)		1	0	0	0	1	1	1		1	1	1	1	1151	047F
E-Stop		1	x	x	x	1	1	1		1	0	1	1	1147	047B
Start inhibit		1	x	x	x	x	x	x		x	x	0	x	1140	0474

Examples for the MainCtrIWord (7.01)

Data set table

Many fieldbus communications use the data set table to transmit data words. The next table shows the configuration number of each data word and the corresponding pointer:

1.1	1	90.01	
1.2	2	90.02	
1.3	3	90.03	
2.1	4		92.01
2.2	5		92.02
23	6		92.03
3.1	7	90.04	
3.2	8	90.05	
33	9	90.06	
4.1	10		92.04
4.2	11		92.05
4.3	12		92.06
5.1	13	90.07	
5.2	14	90.08	
5.3	15	90.09	
6.1	16		92.07
6.2	17		92.08
6.3	18		92.09
7.1	19	90.10	
8.1	20		92.10

Configuration numbers of each data word and its corresponding pointer

AP (Adaptive Program)

Chapter overview

This chapter describes the basics of AP and instructs how to build an application. All needed parameters can be found in the groups 83 to 86 .

What is AP?

Conventionally, the user can control the operation of the drive by parameters. Each parameter has a fixed set of choices or a setting range. The parameters make adapting of the drive easy, but the choices are limited. It is not possible to customize the drive any further. AP makes customizing possible without the need of a special programming tool or language:

- AP is using function blocks,
- DWL AP is the programming and documentation tool.

The maximum size of AP is 16 function blocks. The program may consist of several separate functions.

Features

AP of DCS550 provides the following features:

- 16 function blocks,
- more than 20 block types,
- password protection,
- 4 different cycle times selectable,
- shift functions for function blocks,
- debug functions,
o output forcing,
o breakpoint,
o single step,
o single cycle,
- additional output write pointer parameter for each block (group 86) and
- 10 additional user constants (group 85) used as data container

How to build the program

The programmer connects a function block to other blocks through a Block Parameter Set. The sets are also used for reading values from the firmware and transferring data to the firmware. Each Block Parameter Set consists of six parameters in group 84 and a write pointer in group 86 . The figure below shows the use of Block Parameter Set 1 in the firmware (parameters 84.04 to 84.09 and 86.01):

- Block1Type (84.04) selects the function block type.
- Block1ln1 (84.05) selects the source of IN1. A negative value means that the source will be inverted.
- Block1/n2 (84.06) selects the source of $\operatorname{IN} 2$. A negative value means that the source will be inverted.
- Block1/n3 (84.07) selects the source of IN3. A negative value means that the source will be inverted.
- Block1Attrib (84.08) defines the attributes of the inputs.
- Block1Output (84.09) provides the value of the function block output, which can be used further for other input selections. The user cannot edit this parameter value.
- The output value is also available in write pointer Block1Out (86.01). Block1Out (86.01) contains the destination parameter, into which the value is written.

How to connect AP with the firmware

The outputs of AP need to be connected to the firmware. For that purpose, there are two possibilities:

- The outputs, e.g. Block1Output (84.09), can be selected for further functions.
- The output values are available in the write pointers, e.g. Block1Out (86.01). These parameters contain the destination parameters, into which the values are written.

Block Parameter Set of block 1

Example:
Add a constant value and an external additional reference to the speed reference:

1. Set $84.04=2$ (selection of ADD function)
2. Set $84.05=x x . x x$ (selection of the speed reference for Input 1)
3. Set $84.06=x x . x x$ (selection of an external ref for Input 2)
4. Set $84.07=1500$ (constant value for Input 3)
5. Set $84.08=4000$ h (because Input $3=$ constant \Rightarrow Bit $14=1 \Rightarrow 4000 \mathrm{~h}$)
6. Set $86.01=x x . x x$ (write processed value to destination parameter for further processing)
7. 84.09: contains the processed value

How to control the execution of AP

AP executes the function blocks in numerical order according to the block number $1, \ldots, 16$. All blocks use the same time level. The user cannot change this. The user can:

- select the operation mode of AP (stop, start, editing, single cycling, single stepping),
- adjust the execution time level of AP and
- activate or de-activate blocks.

Function blocks, general rules

The use of block input 1 (BlockxIn1) is compulsory (it must be connected). Use of input 2 (BlockxIn2) and input 3 (Blockxln3) is voluntary for the most blocks. As a rule of thumb, an unconnected input does not affect the output of the block.
The Attribute Input (BlockxAttrib) is to set with the attributes, like declaration of constant and bits, of all three inputs. DWL AP does this automatically.
The constant attribute defines a block constant, which can only be changed or modified in EDIT mode.

Block inputs

The blocks use two input formats:

- integer or
- boolean

The used format depends on the function block type. For example, the ADD block uses integer inputs and the OR block boolean inputs.

Note:

The inputs of the block are read when the execution of the block starts, not simultaneously for all blocks!

Block input attributes

Connect block inputs to the parameter of the signal source or a user constant, e.g. Constant1 (85.01).
Depending on the used block type and the desired function, the attributes of all three inputs are to be set as integer, constant or as selection of a bit of a 16-bit word source.
Therefore, it is used a 16-bit word, which is defined as following:

* this type of constant defines a Block Constant. Modification is only possible in EDIT mode. Example:

Example of attribute parameter, with
BlockxIn1 as boolean, bit 10
Blockxln2 as constant
Blockxln3 as integer
\Rightarrow Bits converted into hex, the value 200A (H) is to be set into parameter BlockxAttrib.

Parameter value as an integer input

How the block handles the input
The block reads the selected value in as an integer.

Note:

The parameter selected as an input should be an integer value. The internal scaling for each parameter is available in chapter Parameters.

How to select the input

- Scroll to the input selection parameter of the block and switch to edit mode (Enter).
- Set the address, from which the input value is to be read, with group * $100+$ index, e.g. AccTime1 (22.01) == 2201. A negative address (e.g. -2201) will act an inversion of the connected value.
The figure below shows the DCS Control Panel display when Block1In1 (84.05) is in edit mode:

Example:
Al1 is supplied with a voltage source of 5.8 V . Connect Al 1 to the block as follows:

- Scroll to Block1In1 (84.05) and shift to edit mode (Enter). Set to 503, because the value of Al1 is shown in group 5 with index $3-\operatorname{Al} 1 \mathrm{Val}(05.03)==05 * 100+3=503$.
- The value at the input of the block is 5800, since the integer scaling of AII Val (05.03) is $1000==1 \mathrm{~V}$ see chapter Parameters.

Constant as an integer input

How to set and connect the input
Option 1:

- Scroll to the input selection parameter of the block and switch to edit mode (Enter).
- Give the constant value to this input parameter (arrow keys).
- Accept with Enter.
- Scroll to attribute parameter, e.g. Block1Attrib (4.08).
- Set the bit for constant attribute of this input in Block1Attrib (4.08).
- Accept by Enter.

The constant may have a value from -32768 to 32767 . It is not possible to change the constant while AP is running. The figures below shows the DCS Control Panel display when Block1In2 (84.06) is in edit mode and the constant field is visible:

Option 2:

- User constants 85.01 to 85.10 are reserved for AP. Use them for custom setting. Use parameters 19.01 to 19.12 in the same way, but they are not stored in the flash.
- Connect the user constant to a block as usual by the input selection parameter.

It is possible to change user constants while AP is running. They may have values from -32767 to 32767 .

Parameter value as a boolean input

How the block handles the input
The block:

- reads the selected value as an integer,
- uses the bit defined by the bit field as the boolean input and
- interprets bit value 1 as true and 0 as false.

Example:
The figure below shows the value of Block1In3 (84.07) when the input is connected to DI2. All digital inputs are available in DI StatWord (8.05). Bit 0 corresponds to DI1 and bit 1 to DI2.

Note:

The parameter selected as an input should have a packed boolean value (binary data word).

Constant as a boolean input

How to set and connect the input

- Scroll to the input selection parameter of the block and switch to edit mode (Enter).
- If boolean value true is needed, set the constant to 1 . If boolean value false is needed, set to 0 .
- Accept by Enter.
- Scroll to attribute parameter (BlockxAttrib).
- Set the bit for constant attribute of this input in BlockxAttrib parameter.
- Accept by Enter.

DWL AP

General

Another way to create applications is with DWL AP. It is a program plugged into DWL and can be opened with Tools and DriveAP for DCS550:

Important keys and buttons

Control DWL AP by means of following keys and buttons:

Keys and buttons	Function
Ctrl + left mouse button on a box or function block	Change / insert function blocks, connect in- and outputs in Edit mode
Shift + left mouse button on the red cross	View actual values in Start mode
Cancel	Abort the action
Help	Open the online help

Program modes

There are 5 modes, see AdapProgCmd (83.01):

- Stop: AP is not running and cannot be edited,
- Start: AP is running and cannot be edited,
- Edit: AP is not running and can be edited,
- Use SingleCycle and SingleStep for testing.

Change to Edit mode

Use Ctrl + left mouse button on 83.01 Adaptive Program Control and set to Edit:

Insert function blocks

Use Ctrl + left mouse button on one of the yellow boxes. This opens the pop-up window Insert / Change /
Remove Block:

In this manner, it is possible to insert up to 16 function blocks from the list to the desktop. The button Change Block xx changes the selected block. The button Insert Before Block xx inserts the new block before the selected block. Button Insert After Block xx inserts the new block after the selected block:

Insert Before Block 6
Insert After Block 6
Change Block 6

Connect function blocks

It is possible to connect function blocks to other blocks or to firmware parameters. To connect use Ctrl + left mouse button on the red cross at the input. This opens the pop-up window Set Pointer Parameter. This window provides several connection possibilities:

- Connect a Parameter from the list and set the bit in case of connecting a packed boolean value:

- Connect a Constant value to the input:

- In Advanced mode choose the parameter with group * $100+$ index, e.g. MainCtrIWord (7.01) $==701$:

- Select Undefined if no connection is required:

- Connections of outputs to firmware parameters can be done by means of the output pointers on the right side of the desktop:

To connect an output of a function block with an input of a function block, simply select the output's parameter at the input.

Set the Time level

85.07	0
85.08	0
85.09	0
85.10	0

Saving AP applications

It is possible to save AP applications as *.ap files:

2, DriveAP for DC Drives - DCs550	
File Edit Drive Help	
Open.... Ctrito	ward AP Statu
Save Ctrl+S	
Save As...	
Print...	
Recent File	
Exit	
Esoou	

Function blocks

General

Each of the 16 function blocks has three input parameters IN1 to IN3. It is possible to connect them to the firmware, outputs of other function blocks or constants. Boolean values are interpreted like this:

- 1 as true and
- 0 as false.

A $4^{\text {th }}$ parameter is used for the attributes of the inputs. Manually set this attribute, if the functions blocks are edited with the DCS Control Panel or DWL. The attribute is set automatically when DWL AP is used. The output OUT can connected with the inputs of function blocks. To write output values into firmware parameters connect the necessary output pointer (group 86) to the desired parameter.

Function block	
Illustration	<name> IN1 - IN2 - IN3 OUT Attr.

ADD	Arithmetical function
Illustration	ADD IN1 - IN2 - IN3 OUT
Operation	OUT is the sum of the inputs. $\mathrm{OUT}=\operatorname{IN} 1+\operatorname{IN} 2+\operatorname{IN} 3$
Connections	IN1, IN2 and IN3: 16 bit integer (15 bit + sign) OUT: 16 bit integer (15 bit + sign)

AND	Logical function				
Illustration	AND IN1 - IN2 - IN3 OUT				
Operation	OUT is true if all connected inputs are true, otherwise OUT is false. Truth table:				
	IN1	IN2	IN3	OUT (binary)	OUT (value on display)
	0	0	0	false (all bits 0)	0
	0	0	1	false (all bits 0)	0
	0	1	0	false (all bits 0)	0
	0	1	1	false (all bits 0)	0
	1	0	0	false (all bits 0)	0
	1	0	1	false (all bits 0)	0
	1	1	0	false (all bits 0)	0
	1	1	1	true (all bits 1)	-1
Connections	IN1, IN2 and IN3: boolean OUT: 16 bit integer (packed boolean)				

Bset	Logical function
Illustration	Bset IN1 - IN2 - IN3 OUT
Operation	With Bset, it is possible to set the value of a certain bit in a word. Connect the word to be processed at IN1. Define the number of the bit to be changed at IN2. Define the desired bit value at IN3 (1 for true and 0 for false). OUT is the result of the operation.
Connections	IN1: 16-bit integer (packed boolean); word to be processed e.g. MainCtrIWord (7.01) IN2: $0 \ldots 15$; bit to be changed IN3: boolean; desired bit value OUT: 16-bit integer (packed boolean), result

Compare	Arithmetical function
Illustration	Compare - IN1 - IN2 - IN3 OUT
Operation	Only bits 0,1 and 2 of OUT are valid: - If IN1 > IN2 \Rightarrow OUT $=001$ (OUT bit 0 is true), - if $\operatorname{IN} 1=\operatorname{IN} 2 \Rightarrow$ OUT $=010$ (OUT bit 1 is true) and - if $\operatorname{IN} 1<\mathrm{IN} 2 \Rightarrow \mathrm{OUT}=100$ (OUT bit 2 is true).
Connections	IN1 and IN2: 16 bit integer (15 bit + sign) IN3: not used OUT: 16 bit integer (15 bit + sign)

Count	Arithmetical function
Illustration	Count - IN1 - IN2 - IN3 OUT
Operation	The counter counts the rising edges of IN1. Rising edges at IN2 reset the counter. IN3 limits OUT. IN3 > 0: OUT increases to the set limit. IN3 < 0: OUT increases up to the absolute maximum value (32768). When the maximum value is reached, the output will be set to 0 the counter starts counting from zero.
Connections	IN1: boolean; counts rising edges IN2: boolean; reset input (high active) IN3: 16 bit integer (15 bit + sign); limit OUT: 15 bit integer (15 bit + sign); shows the counted value

D-Pot	Arithmetical function
IIlustration	D-Pot - IN1 - IN2 - IN3 OUT

Operation	IN1 increases OUT. IN2 decreases OUT. The absolute value of IN3 is the ramp time in ms, which is needed to increase OUT from 0 to 32767 . With positive IN3, the output range is limited from 0 to 32767 . With negative IN3, the output range is between -32767 and +32767 . If both IN1 and IN2 are true, IN2 overwrites IN1.
Connections	IN1: boolean; ramp up IN2: boolean; ramp down IN3: 16 bit integer (15 bit + sign); ramp time scale OUT: 16 bit integer (15 bit + sign); ramp value

Filter	Arithmetical function
Illustration	Filter - IN1 - IN2 - IN3 OUT-
Operation	OUT is the filtered value of IN1. IN2 is the filter time in ms. OUT $=\operatorname{IN} 1\left(1-\mathrm{e}^{-t / \mathbb{N} 2}\right)$ Note: The internal calculation uses 32 bits accuracy to avoid offset errors
Connections	IN1: 16 bit integer (15 bits + sign); value to be filtered IN2: 16 bit integer (15 bits + sign); filter time in ms IN3: not used OUT: 16 bit integer (15 bits + sign); filtered value

| Limit \quad Logical function |
| :--- | :--- |

\|llustration	Limit - IN1 - IN2 - IN3 OUT
Operation	The value, connected to IN1 will be limited with IN2 as upper limit and IN3 as lower limit. OUT is the limited input value. OUT stays 0 , if IN3 is $>=$ IN2.
Connections	IN1: 16 bit integer (15 bits + sign); value to be limited IN2: 16 bit integer (15 bits + sign); upper limit IN3: 16 bit integer (15 bits + sign); lower limit OUT: 16 bit integer (15 bits + sign); limited value

MaskSet	Logical function
Illustration	MaskSet - IN1 - IN2 - IN3 OUT
Operation	

Operation	$\begin{array}{l}\text { The block sets or resets the bits in IN1 and IN2. } \\ \text { Example: }\end{array}$

Single bit

IN3 = set			
IN1	IN2	IN3	OUT
0	0	true	0
1	0	true	$\mathbf{1}$
1	1	true	$\mathbf{1}$
0	1	true	$\mathbf{1}$

IN3 $=$ reset			
IN1	IN2	IN3	OUT
0	0	false	0
1	0	false	$\mathbf{1}$
1	1	false	0
0	1	false	0

Example:
Whole word with IN3 = set

Whole word with IN3 = reset

Connections
IN1: 16 bit integer (packed boolean); word input IN2: 16 bit integer (packed boolean); word input
IN3: boolean; set / reset IN2 in IN1
OUT: 16 bit integer (packed boolean); result

Operation	OUT is the highest input value. OUT = MAX (IN1, IN2, IN3) Note: An open input is ignored
Connections	IN1, IN2 and IN3: OUT:$\quad 16$ bit integer (15 bits + sign)16 bit integer (15 bits + sign)

Min	Arithmetical function
Illustration	Min IN1 IN2 - IN3 OUT- IN
Operation	OUT is the lowest input value. OUT $=$ MIN (IN1, IN2, IN3) Note: An open input is ignored.
Connections	IN1, IN2 and IN3: OUT: 16 bit integer (15 bits + sign) 16 bit integer (15 bits + sign)

MulDiv	Arithmetical function
Illustration	MulDiv
	IN1 - IN2 -IN3 OUT
Operation	OUT is the IN1 multiplied with IN2 and divided by IN3. OUT $=(\operatorname{IN} 1$ * $\operatorname{IN} 2) / / \operatorname{N} 3$
Connections	IN1, IN2 and IN3: 16 bit integer (15 bits + sign) OUT: 16 bit integer (15 bits + sign $)$

NotUsed	-
Illustration	
Operation	Block is not enabled and not working, default
Connections	-

OR	Logical function				
Illustration	OR IN1 IN2 - IN2 - IN3 OUT-				
Operation	OUT is true if any of the connected inputs is true, otherwise OUT is false. Truth table:				
	IN1	IN2	IN3	OUT (binary)	OUT (value on display)
	0	0	0	false (all bits 0)	0
	0	0	1	true (all bits 1)	-1
	0	1	0	true (all bits 1)	-1

	0	1	1	true (all bits 1)	-1	
	1	0	0	true (all bits 1)	-1	
	1	0	1	true (all bits 1)	-1	
	1	1	0	true (all bits 1)	-1	
	1	1	1	true (all bits 1)	-1	
Connections	IN1, IN2 and IN3: boolean value OUT: 16 bit integer (packed boolean)					

ParRead	Parameter function
Illustration	ParRead - IN1 - IN2 - IN3 OUT
Operation	OUT shows the value of a parameter. IN1 defines the group. IN2 defines the index. Example: Reading AccTime1 (22.01): IN1 = 22 and IN2 $=01$
Connections	IN1: 16 bit integer (15 bits + sign); group IN2: 16 bit integer (15 bits + sign); index IN3: not used OUT: 16 bit integer (15 bits + sign); parameter value

ParWrite	Parameter function
Illustration	ParWrite - IN1 - IN2 - IN3 OUT
Operation	Value of IN1 is written into a parameter defined by IN2 as group * $100+$ index, e.g. MainCtrlWord (7.01) $==$ 701. The block is activated with a change of IN1. IN3 determines if the value is saved in the flash. Attention: Cyclic saving of values in the flash will damage it! Do not set IN3 constantly to true! OUT gives the error code, if parameter access is denied. Examples: Set AccTime1 (22.01) $=150$, not saving into flash: IN1 = 150, desired value, this must be a defined as a constant IN2 $=2201$, this must be a defined as a constant IN3 = false Set SpeedRef (23.01) = by means of AI1, not saving into flash: IN1 = 517, desired signal, this must be defined as a parameter IN2 $=2201$, this must be a defined as a constant IN3 = false
Connections	IN1: 16 bit integer (15 bits + sign); desired value IN2: 16 bit integer (15 bits + sign); group * $100+$ index IN3: boolean; true = save in flash, false = don't save in flash OUT: 16 bit integer (packed boolean); error code

PI	Arithmetical controller

lllustration	Pl $-\mathrm{IN1}$ $-\operatorname{IN} 2$ $-\operatorname{IN3}$ -1 OUT
Operation	OUT is IN1 multiplied by (IN2 / 100) plus integrated IN1 multiplied by (IN3 / 100). $O=I 1^{*} I 2 / 100+(I 3 / 100) * \int I 1$ Note: The internal calculation uses 32 bits accuracy to avoid offset errors.
Connections	IN1: 16 bit integer $(15$ bit + sign); error (e.g. speed error) IN2: 16 bit integer $(15$ bit + sign); p-part $(30==0.3,100==1)$ IN3: 16 bit integer $(15$ bit + sign); i-part $(250==2.5,5,000==50)$ OUT: 16 bit integer $(15$ bits + sign); the range is limited from $-20,000$ to $+20,000$
Pl-Bal	Arithmetical function
Illustration	PI-Bal IN1 - IN2 - IN3 OUT
Operation	The PI-Bal block initializes the PI block. The PI-Bal block must follow directly behind the PI block. It can only be used together with the PI block. When IN1 is true, the PI-Bal block writes the value of IN2 directly into OUT of the PI block. When IN1 is false, the PI-Bal block releases OUT of the PI block. Normal operation continues starting with the set output value - bumpless transition.
Connections	IN1: boolean; true = balance PI block, false = no balancing IN2: 16 bit integer (15 bits + sign); balance value IN3: not used OUT: affects PI block
Ramp	Arithmetical function
Illustration	Ramp - IN1 - IN2 - IN3 OUT
Operation	IN1 is the input. IN2 and IN3 are the times. OUT increases or decreases until the input value is reached.
Connections	IN1: 16 bit integer (15 bit + sign); ramp input IN2: 16 bit integer (15 bit + sign); ramp up time in ms (related to 20,000), acceleration IS3: 16 bit integer (15 bit + sign); ramp down time in ms, (related to 20,000), deceleration OUT: 16 bit integer (15 bit + sign); ramp output

Sqrt	Arithmetical function
Illustration	Sqrt - IN1 - IN2 - IN3 OUT
Operation	OUT is the square root of IN1 * IN2. With IN3 = true IN1 and IN2 are read as absolute values: $O U T=\sqrt{\|I N 1\|^{*}\|I N 2\|}$ With IN3 = false OUT is set to zero if IN1 * IN2 is negative: $\begin{array}{ll} O U T=\sqrt{I N 1 * I N 2} ; & \text { if } I N 1 * I N 2 \geq 0 \\ O U T=0 & \text { if } I N 1 * I N 2<0 \end{array}$
Connections	IN1: 16 bit integer (15 bits + sign) IN2: 16 bit integer (15 bits + sign) IN3: boolean OUT: 16 bit integer

SqWav	Arithmetical function
Illustration	SqWav $=$ IN1 IN2 IN3 OUT -IN3
Operation	OUT alternates between the value of IN3 and zero (0), if the block is enabled with IN1 = true. The period is set with IN2 in ms.
Connections	IN1: boolean; true = enable SqWav, false = disable SqWav IN2: 16 bit integer; cycle time in ms IN3: 16 bit integer (15 bits + sign); height of square wave OUT: 16 bit integer (15 bits + sign); square wave

SR	Logical function				
Illustration	- SR - IN1 - IN2 - IN3	OUT			
Operation	Set/reset block. IN1 (S) sets OUT. IN2 (R) or IN3 (R) reset OUT. If IN1, IN2 and IN3 are false, the current value remains at OUT. The SR is reset dominant. Truth table:				
	IN1	IN2	IN3	OUT (binary)	OUT (value on display)
	0	0	0	no change	no change
	0	0	1	false (all bits 0)	0
	0	1	0	false (all bits 0)	0
	0	1	1	false (all bits 0)	0
	1	0	0	true (all bits 1)	-1
	1	0	1	false (all bits 0)	0
	1	1	0	false (all bits 0)	0
	1	1	1	false (all bits 0)	0
Connections	IN1, IN2 and IN3: boolean OUT: 16 bit integer (15 bits + sign $)$				

Switch-B	Logical function
Illustration	Switch-B IN1 - IN2 - IN3 OUT
Operation	OUT is equal to IN2 if IN1 is true. OUT is equal to IN3 if IN1 is false. IN1 IN2 $2-$ IN3 OUT
Connections	IN1: boolean (only bit 0 is valid) IN2 and IN3: boolean OUT: 16 bit integer (packed boolean)

Switch-I	Arithmetical function
Illustration	Switch-1
	$\begin{array}{\|ll\|} \hline \text { IN1 } & \\ - \text { IN2 } & \\ - \text { IN3 } & \text { OUT } \\ \hline \end{array}$
Operation	OUT is equal to IN2 if IN1 is true. OUT is equal to IN3 if IN1 is false.
	IN1 ${ }^{\text {I }}$ OUT
	$0=$ IN3
	$1=$ IN2
Connections	IN1: boolean (only bit 0 is valid) IN2 and IN3: 16 bit integer $(15$ bits + sign $)$ OUT: 16 bit integer (15 bits + sign $)$

TOFF	Logical function
Illustration	TOFF
	$\begin{array}{\|l\|} \hline \text { IN1 } \\ \hline \text { IN2 } \\ - \text { IN3 } \\ \hline \end{array}$
Operation	OUT is true when IN1 is true. OUT is false when IN1 has been false for a time >= IN2. OUT remains true as long as IN1 is true plus the time defined in IN2.

TON	Logical function
Illustration	TON IN1 - IN2 - IN3 OUT
Operation	OUT is true when IN1 has been true for a time >= IN2.
Connections	IN1: boolean, input IN2: 16 bit integer; delay time in ms (IN3 = false) or s (IN3 = true) IN3: boolean; determines unit of time OUT: 16 bit integer (packed boolean); result with values on display: True $=-1$, false $=0$

Trigg	Logical function
IIlustration	Trigg - IN1 - IN2 - IN3 OUT Operation The rising edge of IN1 sets OUT bit 0 for one program cycle. The rising edge of IN2 sets OUT bit 1 for one program cycle. The rising edge of IN3 sets OUT bit 2 for one program cycle.

Winder

Chapter overview

This chapter describes the winder and instructs how to use the winder blocks of the DCS550. All needed parameters can be found in the groups 61 to 66 .

Winder basics

Activate the winder by means of following steps:

1. choose a winder macro with WinderMacro (61.01),
2. activate the winder blocks by setting WiProgCmd (66.01) = Start,
3. the outputs of the winder blocks are activated and send references to the speed control chain using WriteToSpdChain (61.02)

Winder blocks

The winder blocks are sorted according to their default execution sequence.

Speed reference scaling

The Line speed reference is converted to motor speed reference by the diameter calculation. That means:

- 100 \% line speed reference - see LineSpdScale (61.09) - correspond to 100% motor speed - see SpeedScaleAct (2.29) - at minimum diameter - see DiameterMin (62.05).
M1SpeedScale (50.01) is set according to maximum needed motor speed and not to rated motor speed.

Commissioning hints:

For proper calculation following rules apply:

- Maximum motor speed ($\mathrm{n}_{\text {max }}$) is reached with minimum diameter ($\mathrm{D}_{\text {min }}$) at maximum line speed ($\mathrm{v}_{\text {max }}$).
- The scaling of line speed and motor speed is needed, because the winder works with relative values (percent):

1. Set LineSpdUnit (61.12) to the desired unit.
2. Set LineSpdScale (61.09) to the maximum line speed. Thus, the maximum line speed corresponds to 20,000 internal line speed units.
3. Set LineSpdPosLim (61.10) to maximum line speed.
4. Calculate the maximum needed motor speed:

$$
n_{\max }=\frac{60 \mathrm{~s}}{\min } * \frac{v_{\max }}{\pi * D_{\min }} * i \underbrace{l}_{\substack{\mathrm{n}_{\text {max }}[\mathrm{rpm}] \\
\mathrm{v}_{\max }[\mathrm{m} / \mathrm{s}] \\
\mathrm{D}_{\min }[\mathrm{m}]}} \begin{aligned}
& \text { maximum needed motor speed } \\
& \text { minimum diameter } \\
& \text { gear ratio (motor / load) }
\end{aligned}
$$

5. Set M1SpeedScale (50.01) $=\mathrm{n}_{\text {max }}$, even if the motor data allow a wider speed range. Thus, the maximum motor speed corresponds to 20,000 internal speed units.
6. Set M1SpeedMax (20.02) $=\mathrm{n}_{\max }+$ max. WindSpdOffset (61.14) in rpm, even if the motor data allow a wider speed range.
7. Set M1SpeedMin (20.01) $=-\left[n_{\max }+\right.$ max. WindSpdOffset (61.14) in rpm], even if the motor data allow a wider speed range.

- WindSpdOffset (61.14) is used to saturate the speed controller and thus only active when WinderMacro (61.01) = IndirectTens or DirectTens.

Ramp

The standard rpm ramp is re-configured for the winder control to become a line speed ramp.

WinderLogic (winder logic)

The winder logic is reacting to the used winder control word and thus generating the control signals for all other winder blocks. UsedWCW (61.17) contains all winder depending commands. It is possible to write on the commands from the overriding control system via the winder control word, see WindCtrlWord (61.16), or via parameters. The normal command source should be automatic. Details see chapter Appendix B: Firmware structure diagrams.

Choose the winder configuration by means of WindUnwindCmd (61.04) and TopBottomCmd (61.05):

DiameterAct (diameter calculation)

In most cases, the actual diameter must be calculated from the line speed - see SpeedRef3 (2.02) - and measured motor speed - see MotSpeed (1.04), because a diameter sensor does not exist. This is done by means of DiaLineSpdIn (62.01) and DiaMotorSpdIn (62.02):
D $\frac{60 \mathrm{~s}}{\min } * \frac{v}{\pi * n} * i$
$D[\mathrm{~m}]$
$\mathrm{v}[\mathrm{m} / \mathrm{s}]$
$\mathrm{n}[\mathrm{rpm}]$
diameter
n [rpm] motor speed
i

Use the diameter calculation to calculate the actual diameter from the line speed and the actual motor speed. It is possible to force or preset the diameter of the coil. To avoid steps the calculated diameter is passed through a ramp generator. The minimum diameter is used as the lower limit.

Commissioning hints:

- The diameter calculation works with relative diameters in percent of the maximum allowed diameter, so the physical values must be converted.

DiameterMi $n(62.05)=\frac{D_{\min }}{D_{\max }} * 100 \%$
DiameterVa lue (62.03) $=\frac{D_{\text {act }}}{D_{\max }} * 100 \%$

PID Control (PID controller)

The PID controller is used as tension controller for direct tension control. The actual tension position is connected to analog input 3 via PID Act1 (40.01). The tension reference comes from the output of winder block TensionRef and is connected to PIDRef1 (40.13). The PID controller output PID Out (3.09) is connected to winder block TensToTorq.

In case of dancer control, the PID controller is configured as position controller. The actual dancer position is connected to analog input 3 via PID Act1 (40.01). The dancer reference is to be written into Data1 (19.01) and connected to PIDRef1 (40.13). The PID controller output PID Out (3.09) is connected to SpeedCorr (23.04).

AdaptSPC Kp (p-part adaption)

Use the p-part adaption to adapt the speed controller p-part according to actual diameter of the coil. It is variable between minimum diameter and maximum diameter. Use the smallest p-part with minimum diameter. With maximum diameter, send the largest p-part to the speed controller.

Commissioning hints:

- AdaptKpMin (62.11) has to be determined by manual tuning of the speed controller. Only the spool is on the winder and set WinderMacro (61.01) = NotUsed.
- AdaptKpMax (62.12) has to be determined by manual tuning of the speed controller. The largest coil (maximum diameter and maximum width) has to be on
 the winder and set WinderMacro (61.01) = NotUsed.

Winder

AccActAdjust (acceleration adjustment)

The actual acceleration adjustment filters e.g. the $d v _d t$ (2.16) output of the ramp with a PT1-filter. The output has to be 100% with maximum acceleration using the shortest ramp time. To archive this goal a trimming input is available.

Commissioning hints:

- AccTrim (62.19) has to be determined with acceleration trials. AccActAdjust (62.21) has to be 100% with maximum acceleration using the shortest ramp time.
- Autotuning is possible with WinderTuning (61.21) = InerMechComp.

TensionRef (tension reference)

The tension reference block contains four functions.

1. By means of the tension reference, it is possible to force or preset the tension set point.
2. Tension reference is limited by a minimum and then passed through a ramp with hold function to prevent tension steps.
3. If the friction is very high, a start tension pulse is helpful to break away the machine. The width, amplitude and release of the start impulse can be set via parameters.

4. Use the taper function to reduce the tension depending on an increasing diameter. The reduction of the tension begins with diameters over the taper diameter and ends at the maximum diameter. Following formula is valid at the maximum diameter: Tension $_{\text {Output }}=$ Tension $_{\text {Input }}-$ TaperTens (63.06)

TensToTorq (tension to torque)

For winders it is important that the tension fit to the web. With too low tension, the web does not wind correctly. With too high tension, the web might rip. This is the worst case, because the winder will accelerate, if there is no web break monitoring. The tension is a force measured in Newton [N]. When the tension is multiplied by the radius of the coil, the necessary torque for the selected tension can be calculated. Most torque is needed with maximum diameter at lowest motor speed. This winder block features 3 tension inputs and 1 torque output.

$$
T=\frac{F * D}{2 * i} \quad \begin{array}{ll}
\mathrm{F}[\mathrm{Nm}] \\
\mathrm{F}[\mathrm{~N}]
\end{array} \quad \begin{aligned}
& \text { torque } \\
& \text { tension }
\end{aligned}
$$

Commissioning hints:

For proper calculation following rules apply:

- Maximum torque ($T_{\max }$) is reached at maximum diameter ($D_{\max }$), means with a diameter of 100 \%.
- The motor torque - see MotTorqNom (4.23) - must be larger than maximum torque ($\mathrm{T}_{\max }$).
- The torque scaling is needed, because the tension to torque function works with relative values.

$$
\begin{array}{lll}
\text { TTTScale }(63.21)=\frac{T_{\max }}{T_{M o t}} * 100 \% & \begin{array}{l}
\mathrm{T}_{\max }[\mathrm{Nm}] \\
\mathrm{T}_{\operatorname{Mot}}[\mathrm{Nm}] \\
\mathrm{F}_{\max }[\mathrm{N}]
\end{array} & \begin{array}{l}
\text { maximum needed torque } \\
\text { nominal motor torque, see MotTorqNom (4.23) } \\
\text { maximum tension }
\end{array} \\
T_{\max }=\frac{F_{\max } * D_{\max }}{2 * i} & \mathrm{D}
\end{array} \quad \begin{aligned}
& \text { maximum diameter } \\
& \text { mear ratio (motor / load) }
\end{aligned}
$$

InertiaComp (inertia / acceleration compensation)

During the winding operation, the motor must only generate the torque for the needed tension. For acceleration, an additional torque is necessary. The acceleration torque (inertia compensation) depends on the inertia of the complete winder (motor, gearbox, spool and coil). The inertia of motor, gearbox and spool is constant. The inertia of the coil is a function of the diameter. In case the diameter is small, the inertia is small. With increasing diameter, the inertia increases. That means more acceleration torque (inertia compensation) is needed. The problem in many applications is that the inertia is not available. Thus, it has to be determined by means of acceleration tests.

$$
\mathrm{J}_{\text {coil }} \sim \mathrm{D}^{4}
$$ $J_{\text {coil }} \sim D^{4}$

Commissioning hints:

- InerMech (62.26) has to be determined by means of acceleration trials with maximum acceleration using the shortest ramp time. Only the spool is on the winder. The result is available in MotTorqFilt (1.07) during the acceleration. Autotuning is possible with WinderTuning (61.21) = InerMechComp.
- InerCoil (62.25) has to be determined by means of acceleration trials with maximum acceleration using the shortest ramp time. The largest coil (maximum diameter and maximum width) has to be on the winder. The result is available in MotTorqFilt (1.07) during the acceleration. Autotuning is possible with WinderTuning (61.21) = InerCoilComp.
- Do not forget to subtract the average friction losses from the measured values - see FrictAtOSpd (63.26) to FrictAt100Spd (63.30).
- The width calculation works with relative width in percent of the maximum width, so the physical values must be converted.
InerCoilWidth (62.27) $=\frac{\text { Width }_{\text {act }}}{\text { Width }_{\text {max }}} * 100 \%$
- InerReleaseCmd (62.28) releases InertiaComp (62.30). The output is forced to zero if the switch is open.

$$
\begin{aligned}
& T=J * \frac{d \omega}{d} \quad \mathrm{~T}_{\text {acc }}\left[\mathrm{Nm}_{2}\right] \quad \text { torque needed for acceleration } \\
& T_{a c c}=J * \frac{d t}{d t} \\
& J\left[k g \mathrm{~m}^{2}\right] \text { inertia of the complete winder } \\
& \mathrm{d} \omega / \mathrm{dt}\left[1 / \mathrm{s}^{2}\right] \text { angular acceleration }
\end{aligned}
$$

FrictionComp (friction I loss compensation)

During the winding operation, the motor must only generate the torque for the needed tension. The mechanics of the winder generate losses from friction. These losses depend on the motor speed and must be measured in speed trials. They are non-linear and must be saved in a characteristic curve with supporting points. The friction compensation calculates the torque needed to compensate the losses of the winder mechanics depending on the speed.

Commissioning hints:

- FrictAtOSpd (63.26) is the static friction. It can be determined by slowly increasing the torque reference until the motor starts turning. For this trial all mechanics have to be connected.

- FrictAt25Spd (63.27) has to be determined by means of constant speed trials at 25% speed. See the result in MotTorqFilt (1.07).
- FrictAt50Spd (63.28) has to be determined by means of constant speed trials at 50% speed. See the result in MotTorqFilt (1.07).
- FrictAt75Spd (63.29) has to be determined by means of constant speed trials at 75% speed. See the result in MotTorqFilt (1.07).
- FrictAt100Spd (63.30) has to be determined by means of constant speed trials at 100% speed. See the result in MotTorqFilt (1.07).
- FrictReleaseCmd (63.32) releases FrictionComp (63.34). The output is forced to zero if the switch is open.
- Autotuning is possible with WinderTuning (61.21) = FrictionComp.

Add1 (adder 1)

Adder 1 provides two torque inputs. The sum of Add1 (64.06) can be written to other parameters by means of Add1OutDest (64.01). Usually adder 1 is used to write on the torque limit of the speed controller.

Commissioning hints:

- Add1ReleaseCmd (64.04) releases Add1 (64.06). The output is forced to zero if the switch is open.

Add2 (adder 2)

Adder 2 provides two torque inputs. The sum of $\operatorname{Add} 2$ (64.13) can be written to other parameters by means of Add2OutDest (64.08). Usually adder 2 is used to write on the load compensation for inertia and friction compensation.

Commissioning hints:

- Add2ReleaseCmd (64.11) releases Add2 (64.13). The output is forced to zero if the switch is open.

-

Winder macros

Winder macros are pre-programmed parameter sets. During start-up, configure the winder easily without changing individual parameters. The functions of inputs, outputs and control structure are macro dependent. Any winder macro can be adapted by changing individual parameters without restrictions. Select a winder macro by means of WinderMacro (61.01). The following tables and diagrams show the structure of the macros.

NotUsed

Winder is blocked, default setting. Following parameters are set when using WinderMacro (61.01) = NotUsed:

Parameter name	NotUsed	Factory (default)
TorqMaxSPC (20.07)	325%	325%
TorqMinSPC (20.08)	-325%	-325%
IndepTorqMaxSPC (20.24)	325%	325%
IndepTorqMinSPC (20.25)	-325%	-325%
SpeedCorr (23.04)	0 rpm	0 rpm
SpeedRefScale (23.16)	1	1
TorqSel (26.01)	Speed	Speed
LoadComp (26.02)	0%	0%
PID Act1 (40.06)	0	0
PID Ref1 (40.13)	0	0
PID OutMin (40.16)	-100%	-100%
PID OutMax (40.17)	100%	100%
PID OutDest (40.18)	0	0
PID ReleaseCmd (40.23)	NotUsed	Auto
AdaptKpOutDest (62.13)	0	0
Add1OutDest (64.01)	0	0
Add2OutDest (64.08)	0	0

Velocity control

Velocity control calculates the coil diameters and motor speed references. By means of the diameter, it is possible to adapt the speed controller to all coil diameters. The tension is not controlled. Following parameters are set when using WinderMacro (61.01) = VelocityCtrl:

Parameter name	VelocityCtrl	Factory (default)
Ref1Sel (11.03)	Al1	SpeedRef2301
TorqMaxSPC (20.07)	325 \%	325 \%
TorqMinSPC (20.08)	-325 \%	-325 \%
IndepTorqMaxSPC (20.24)	325 \%	325 \%
IndepTorqMinSPC (20.25)	-325 \%	-325 \%
SpeedCorr (23.04)	0 rpm	0 rpm
SpeedRefScale (23.16)	1	1
TorqSel (26.01)	Speed	Speed
TorqMuxMode (26.04)	TorqSel2601	TorqSel2601
LoadComp (26.02)	0 \%	0 \%
KpPID (40.01)	5	5
TiPID (40.02)	2500	2500
PID Act1 (40.06)	0	0
PID Ref1 (40.13)	0	0
PID OutMin (40.16)	-100 \%	-100 \%
PID OutMax (40.17)	100 \%	100 \%
PID OutDest (40.18)	0	0
PID ReleaseCmd (40.23)	Auto	Auto
WriteToSpdChain (61.02)	Auto	Auto
WindUnwindCmd (61.04)	WindCtrlWord	WindCtrIWord
TopBottomCmd (61.05)	WindCtrlWord	WindCtrlWord
WinderOnCmd (61.06)	DI1	Auto
TensionOnCmd (61.07)	Auto	Auto
WindSpdOffset (61.14)	0	0
DiaLineSpdln (62.01)	202 = SpeedRef2 (2.02)	202 = SpeedRef2 (2.02)
DiaMotorSpdIn (62.02)	104 = MotSpeed (1.04)	$104=$ MotSpeed (1.04)
DiameterSetCmd (62.04)	DI2	NotUsed
AdaptKpDiaActIn (62.10)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
AdaptKpOutDest (62.13)	$2403=K p S ~(24.03)$	0
AccActln (62.17)	$216=d v=d t$ (2.16)	$216=d v$ _dt (2.16)
InerDiaActln (62.23)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
InerAccActIn (62.24)	6221 = AccActAdjust (62.21)	6221 = AccActAdjust (62.21)
InerReleaseCmd (62.28)	Auto	Auto
TensRefln (63.01)	0	0
TaperDiaActln (63.02)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
TensValueln (63.03)	0	0
TensSetCmd (63.04)	Auto	Auto
TensRampHoldCmd (63.09)	RelTensRamp	RelTensRamp
TensPulseCmd (63.13)	Auto	Auto
TTT Ref1In (63.18)	0	0
TTT Ref2In (63.19)	6315 = TensionRef (63.15)	6315 = TensionRef (63.15)
TTT Ref3In (63.20)	0	0
TTT DiaActln (63.22)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
FrictMotorSpdln (63.31)	0	104 = MotSpeed (1.04)
FrictReleaseCmd (63.32)	Auto	Auto
Add1OutDest (64.01)	0	0
Add1In1 (64.02)	6324 = TensToTorq (63.24)	6324 = TensToTorq (63.24)
Add1In2 (64.03)	0	0
Add1ReleaseCmd (64.04)	Auto	Auto
Add2OutDest (64.08)	0	0
Add2In1 (64.09)	6230 = InertiaComp (62.30)	6230 = InertiaComp (62.30)
Add2In2 (64.10)	6334 = FrictionComp (63.34)	6334 = FrictionComp (63.34)
Add2ReleaseCmd (64.11)	Auto	Auto

Winder

Indirect tension control

Indirect tension control is an open loop control, since the actual tension is not measured. The tension is controlled via diameter and pre-set charts for inertia and friction. The speed controller stays active, but is saturated. This structure provides a very robust control behavior because no physical tension measurement is required. Following parameters are set when using WinderMacro (61.01) = IndirectTens:

Parameter name	IndirectTens	Factory (default)
Ref1Sel (11.03)	Al1	SpeedRef2301
TorqMaxSPC (20.07)	120 \%	325 \%
TorqMinSPC (20.08)	-120 \%	-325 \%
IndepTorqMaxSPC (20.24)	325 \%	325 \%
IndepTorqMinSPC (20.25)	-10 \%	-325 \%
SpeedCorr (23.04)	0 rpm	0 rpm
SpeedRefScale (23.16)	1	,
TorqSel (26.01)	Speed	Speed
TorqMuxMode (26.04)	TorqSel2601	TorqSel2601
LoadComp (26.02)	0 \%	0 \%
KpPID (40.01)	5	5
TiPID (40.02)	2500	2500
PID Act1 (40.06)	0	0
PID Ref1 (40.13)	0	0
PID OutMin (40.16)	-100 \%	-100 \%
PID OutMax (40.17)	100 \%	100 \%
PID OutDest (40.18)	0	0
PID ReleaseCmd (40.23)	Auto	Auto
WriteToSpdChain (61.02)	Auto	Auto
WindUnwindCmd (61.04)	WindCtriWord	WindCtrlWord
TopBottomCmd (61.05)	WindCtrlWord	WindCtrlWord
WinderOnCmd (61.06)	DI1	Auto
TensionOnCmd (61.07)	Auto	Auto
WindSpdOffset (61.14)	150 rpm, connected to SpeedCorr (23.04)	0
DiaLineSpdIn (62.01)	202 = SpeedRef2 (2.02)	202 = SpeedRef2 (2.02)
DiaMotorSpdIn (62.02)	104 = MotSpeed (1.04)	104 = MotSpeed (1.04)
DiameterSetCmd (62.04)	DI2	NotUsed
AdaptKpDiaActIn (62.10)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
AdaptKpOutDest (62.13)	$2403=K p S$ (24.03)	0
AccActln (62.17)	$216=d v _d t$ (2.16)	$216=d v _d t$ (2.16)
InerDiaActln (62.23)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
InerAccActln (62.24)	6221 = AccActAdjust (62.21)	6221 = AccActAdjust (62.21)
InerReleaseCmd (62.28)	Auto	Auto
TensRefln (63.01)	516 = Al2 ValScaled (5.16)	0
TaperDiaActln (63.02)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
TensValueln (63.03)	0	0
TensSetCmd (63.04)	Auto	Auto
TensRampHoldCmd (63.09)	RelTensRamp	RelTensRamp
TensPulseCmd (63.13)	Auto	Auto
TTT Ref1In (63.18)	0	0
TTT Ref2In (63.19)	6315 = TensionRef (63.15)	6315 = TensionRef (63.15)
TTT Ref3In (63.20)	0	0
TTT DiaActln (63.22)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
FrictMotorSpdIn (63.31)	104 = MotSpeed (1.04)	104 = MotSpeed (1.04)
FrictReleaseCmd (63.32)	Auto	Auto
Add1OutDest (64.01)	2024 =IndepTorqMaxSPC (20.24)	0
Add1In1 (64.02)	6324 = TensToTorq (63.24)	6324 = TensToTorq (63.24)
Add1In2 (64.03)	0	0
Add1ReleaseCmd (64.04)	Auto	Auto
Add2OutDest (64.08)	2602 = LoadComp (26.02)	0
Add2In1 (64.09)	6230 = InertiaComp (62.30)	6230 = InertiaComp (62.30)
Add2In2 (64.10)	6334 = FrictionComp (63.34)	6334 = FrictionComp (63.34)
Add2ReleaseCmd (64.11)	Auto	Auto

Direct tension control

Direct tension control (load cell control) is a closed loop control for the tension. The actual tension is measured by means of a load cell and fed into the drive via analog input (AI3) and PID controller in group 40.
The speed controller stays active, but is saturated. Following parameters are set when using WinderMacro
(61.01) = DirectTens:

Parameter name	DirectTens	Factory (default)
Ref1Sel (11.03)	Al1	SpeedRef2301
TorqMaxSPC (20.07)	120 \%	325 \%
TorqMinSPC (20.08)	-120 \%	-325 \%
IndepTorqMaxSPC (20.24)	325 \%	325 \%
IndepTorqMinSPC (20.25)	-10 \%	-325 \%
SpeedCorr (23.04)	0 rpm	0 rpm
SpeedRefScale (23.16)	1	1
TorqSel (26.01)	Speed	Speed
TorqMuxMode (26.04)	TorqSel2601	TorqSel2601
LoadComp (26.02)	0 \%	0 \%
KpPID (40.01)	1	5
TiPID (40.02)	1000	2500
PID Act1 (40.06)	517 = Al3 ValScaled (5.17)	0
PID Ref1 (40.13)	6315 = TensionRef (63.15)	0
PID OutMin (40.16)	-10 \%	-100 \%
PID OutMax (40.17)	10 \%	100 \%
PID OutDest (40.18)	0	0
PID ReleaseCmd (40.23)	Auto	Auto
WriteToSpdChain (61.02)	Auto	Auto
WindUnwindCmd (61.04)	WindCtrlWord	WindCtrlWord
TopBottomCmd (61.05)	WindCtrlWord	WindCtrlWord
WinderOnCmd (61.06)	DI1	Auto
TensionOnCmd (61.07)	Auto	Auto
WindSpdOffset (61.14)	150 rpm, connected to SpeedCorr (23.04)	0
DiaLineSpdIn (62.01)	202 = SpeedRef2 (2.02)	202 = SpeedRef2 (2.02)
DiaMotorSpdln (62.02)	104 = MotSpeed (1.04)	$104=$ MotSpeed (1.04)
DiameterSetCmd (62.04)	DI2	NotUsed
AdaptKpDiaActIn (62.10)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
AdaptKpOutDest (62.13)	$2403=K p S ~(24.03)$	0
AccActln (62.17)	$216=d v _d t$ (2.16)	$216=d v=d t$ (2.16)
InerDiaActln (62.23)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
InerAccActIn (62.24)	6221 = AccActAdjust (62.21)	6221 = AccActAdjust (62.21)
InerReleaseCmd (62.28)	Auto	Auto
TensRefln (63.01)	516 = Al2 ValScaled (5.16)	0
TaperDiaActln (63.02)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
TensValueln (63.03)	0	0
TensSetCmd (63.04)	Auto	Auto
TensRampHoldCmd (63.09)	RelTensRamp	RelTensRamp
TensPulseCmd (63.13)	Auto	Auto
TTT Ref1In (63.18)	309 = PID Out (3.09)	0
TTT Ref2In (63.19)	6315 = TensionRef (63.15)	6315 = TensionRef (63.15)
TTT Ref3In (63.20)	0	0
TTT DiaActln (63.22)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
FrictMotorSpdln (63.31)	$104=$ MotSpeed (1.04)	$104=$ MotSpeed (1.04)
FrictReleaseCmd (63.32)	Auto	Auto
Add1OutDest (64.01)	2024 =IndepTorqMaxSPC (20.24)	0
Add1In1 (64.02)	6324 = TensToTorq (63.24)	6324 = TensToTorq (63.24)
Add1In2 (64.03)	0	0
Add1ReleaseCmd (64.04)	Auto	Auto
Add2OutDest (64.08)	2602 = LoadComp (26.02)	0
Add2In1 (64.09)	6230 InertiaComp (62.30)	6230 InertiaComp (62.30)
Add2In2 (64.10)	6334 = FrictionComp (63.34)	6334 = FrictionComp (63.34)
Add2ReleaseCmd (64.11)	Auto	Auto

Winder

Dancer control

In dancer control the tension is established through the dancer's weight. The position of the dancer is read by means of an analog input (AI3). Its position is controlled by an additional speed reference coming from the PID controller in group 40. Following parameters are set when using WinderMacro (61.01) = DancerCtrl:

Parameter name	DancerCtrl	Factory (default)
Ref1Sel (11.03)	Al1	SpeedRef2301
TorqMaxSPC (20.07)	325 \%	325 \%
TorqMinSPC (20.08)	-325 \%	-325 \%
IndepTorqMaxSPC (20.24)	325 \%	325 \%
IndepTorqMinSPC (20.25)	-325 \%	-325\%
SpeedCorr (23.04)	0 rpm	0 rpm
SpeedRefScale (23.16)	1	1
TorqSel (26.01)	Speed	Speed
TorqMuxMode (26.04)	TorqSel2601	TorqSel2601
LoadComp (26.02)	0 \%	0 \%
KpPID (40.01)	1	5
TiPID (40.02)	1000	2500
PID Act1 (40.06)	517 = AI3 ValScaled (5.17)	0
PID Ref1 (40.13)	1901 = Data1 (19.01)	0
PID OutMin (40.16)	-10 \%	-100 \%
PID OutMax (40.17)	10 \%	100 \%
PID OutDest (40.18)	2304 = SpeedCorr (23.04)	0
PID ReleaseCmd (40.23)	Auto	Auto
WriteToSpdChain (61.02)	Auto	Auto
WindUnwindCmd (61.04)	WindCtriWord	WindCtriWord
TopBottomCmd (61.05)	WindCtrlWord	WindCtrlWord
WinderOnCmd (61.06)	DI1	Auto
TensionOnCmd (61.07)	Auto	Auto
WindSpdOffset (61.14)	0	0
DiaLineSpdIn (62.01)	202 = SpeedRef2 (2.02)	202 = SpeedRef2 (2.02)
DiaMotorSpdln (62.02)	$104=$ MotSpeed (1.04)	$104=$ MotSpeed (1.04)
DiameterSetCmd (62.04)	DI2	NotUsed
AdaptKpDiaActIn (62.10)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
AdaptKpOutDest (62.13)	$2403=K p S ~(24.03)$	0
AccActln (62.17)	216 = dv_dt (2.16)	216 = dv_dt (2.16)
InerDiaActln (62.23)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
InerAccActln (62.24)	6221 = AccActAdjust (62.21)	6221 = AccActAdjust (62.21)
InerReleaseCmd (62.28)	Auto	Auto
TensRefln (63.01)	0	0
TaperDiaActIn (63.02)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
TensValueIn (63.03)	0	0
TensSetCmd (63.04)	Auto	Auto
TensRampHoldCmd (63.09)	RelTensRamp	RelTensRamp
TensPulseCmd (63.13)	Auto	Auto
TTT Ref1In (63.18)	0	0
TTT Ref2In (63.19)	6315 = TensionRef (63.15)	6315 = TensionRef (63.15)
TTT Ref3In (63.20)	0	0
TTT DiaActln (63.22)	6208 = DiameterAct (62.08)	6208 = DiameterAct (62.08)
FrictMotorSpdln (63.31)	104 = MotSpeed (1.04)	104 = MotSpeed (1.04)
FrictReleaseCmd (63.32)	Auto	Auto
Add1OutDest (64.01)	0	0
Add1/n1 (64.02)	6324 = TensToTorq (63.24)	6324 = TensToTorq (63.24)
Add1In2 (64.03)	0	0
Add1ReleaseCmd (64.04)	Auto	Auto
Add2OutDest (64.08)	2602 = LoadComp (26.02)	0
Add2In1 (64.09)	6230 = InertiaComp (62.30)	6230 = InertiaComp (62.30)
Add2In2 (64.10)	6334 = FrictionComp (63.34)	6334 = FrictionComp (63.34)
Add2ReleaseCmd (64.11)	Auto	Auto

Winder

Winder commissioning

Basic commissioning

Before starting the winder commissioning following steps have to be done first:

1. Basic commissioning steps 1 to 5 with a freely turning machine, no mechanics connected:

Assistants
Welcome to the DCS550 assistant
Start basic commissioning (1 to 7):

```
Start
```

or choose specific assistants Basic:
$\sqrt{ } 1$. Name plate data
$\sqrt{ }$ 2. Macro assistant
\checkmark 3. Autotuning field current controller
$\sqrt{ }$ 4. Autotuning armature current controller
\checkmark 5. Speed feedback assistant

- 6. Autotuning speed controller

7. Field weakening assistant
8. Basic commissioning steps 6 and 7 with a freely turning machine, gearbox and spool connected, no web:
```
Assistants
Welcome to the DCS550 assistant
Start basic commissioning (1 to 7):
    Start
    or choose specific assistants
Basic:
    \square 1. Name plate data
    - 2. Macro assistant
```

```
            3. Autotuning field current controller
            4. Autotuning armature current controller
            5. Speed feedback assistant
V 6. Autotuning speed controller
    V 7. Field weakening assistant
```


Advanced commissioning

1. Set all necessary protections and limits, make sure the E-stop / el. Disconnect is working properly and connect the overriding control system (serial communication):
Г I/O assistant
V Protection and limit assistant
V E-stop / el. disconnect assistant
$\sqrt{ } /$ Serial communication assistant
\lceil Configurable assistant
「 Winder basic settings
■ Winder tuning with spool
\lceil Winder tuning with largest coil
Γ Winder overview

Winder commissioning

Commissioning hints

- Follow the commissioning hints given by the online help using the question mark:

ABB

Commissioning hint: Use default setting Auto!

Following default settings should be kept:
WriteToSpdChain (61.02) = Auto
TensionOnCmd (61.07) = Auto
LineSpdNegLim (61.11) = Zero
LineSpdUnit (61.12) = \%
AccFiltTime (62.18) $=100 \mathrm{~ms}$
InerReleaseCmd (62.28) = Auto
TensSetCmd (63.04) = Auto
TensRampHoldCmd (63.09) = RelTensRamp
TensPulseCmd (63.13) = Auto
TTT Ref2In (63.19) $=6315$ (tension reference)
FrictReleaseCmd (63.32) = Auto

- To go back to normal speed control set WiProgCmd (66.01) = Stop, but keep the winder macro selected see WinderMacro (61.01) - this will keep the parameter settings.

Commissioning

1. Print out the winder overview diagram according to the chosen winder macro.
2. Specify the needed in- and outputs for the winder.

Example using serial communication:

Set CommandSel (10.01) = MainCtrIWord.
For additional winder commands use the auxiliary control bits of the MainCtrIWord (7.01), e.g.:

- Rewind / Unwind command via bit 11, set WindUnwindCmd (61.04) = MCW B11.
- Top / Bottom Command via bit 12, set TopBottomCmd (61.05) = MCW B12.
- Winder on command via bit 13, set WinderOnCmd (61.06) = MCW B13.
- Diameter set command via bit 14, set DiameterSetCmd (62.04) = MCW B14.

Write the line speed reference on SpeedRef (23.01) and set Ref1Sel (11.03) = SpeedRef2301.
Write the initial diameter on DiameterValue (62.03).
Write the tension reference e.g. on Data1 (19.01) and set TensRefln (63.01) $=1901$.

Example using serial local I/O:

Set CommandSel (10.01) = Local I/O.
For additional winder commands use digital inputs, e.g.:

- DI1 for winder on command, set WinderOnCmd (61.06) = DI1.
- DI2 for diameter set command, set DiameterSetCmd (62.04) = DI2.
- DI3 for rewind / unwind command, set WindUnwindCmd (61.04) = DI3.

DI4 for Coast Stop, set Off2 (10.08) = DI4.
DI5 for E-stop, set E Stop (10.09) = DI5.
DI6 for reset, set Reset (10.03) = DI6
DI7 for On, set OnOff1 (10.15) = DI7.
DI8 for Run, set StartStop (10.16) = DI8.
Al1 for line speed reference, set Ref1Sel (11.03) = Al1.
Al2 for tension reference, set TensRefln (63.01) = 516. see Al2 ValScaled (5.16).
AI3 for initial diameter use - see AI3 ValScaled (5.17) and DiameterValue (62.03) - AP block ParWrite:

3. Set the winder basics:

```
\Gamma 1/0 assistant
\Gamma Protection and limit assistant
I E-stop / el. disconnect assistant
I Serial communication assistant
Configurable assistant
V}\mathrm{ Winder basic settings
FWinder tuning with spool
\squareWinder tuning with largest coil
\squareWinder overview
```

4. Adjust the torque limits. Set

- TorqMax (20.05),
- TorqMin (20.06),
- TorqMaxSPC (20.07),
- TorqMin SPC (20.08),
- M1CurLimBrdg1 (20.12) and
- M1CurLimBrdg2 (20.13) to around ± 120 \%.
- Set IndepTorqMinSPC (20.25) $=-10 \%$.

Attention:

Set the above torque limits that they are greater than the sum of tension torque, friction torque and acceleration torque (Torque limits $>\mathrm{T}_{\text {Tension }}+\mathrm{T}_{\text {Friction }}+\mathrm{T}_{\text {Acceleration }}$)
5. Put an empty spool on the winder and adapt AdaptKpMin (62.11).
6. Perform the winder turning with spool (includes Autotuning friction compensation and Autotuning inertia compensation mechanics):

```
- l/0 assistant
FProtection and limit assistant
\Gamma E-stop / el. disconnect assistant
\square Serial communication assistant
Configurable assistant
I Winder basic settings
V}\mathrm{ Winder tuning with spool
I Winder tuning with largest coil
\squareWinder overview
```

7. Put the largest coil on the winder and adapt AdaptKpMax (62.12).
8. Perform the winder turning with largest coil (includes Autotuning inertia compensation coil):
```
\square 1/0 assistant
\square Protection and limit assistant
\square E-stop / el. disconnect assistant
\square Serial communication assistant
Configurable assistant
\square Winder basic settings
\squareWinder tuning with spool
\sqrt { V } \text { Winder tuning with largest coil}
\square Winder overview
```


Attention:

During the autotuning the motor will run up to maximum line speed, see LineSpdScale (61.09) and LineSpdPosLim (61.10). It is possible to limit the speed by means of LineSpdPosLim (61.10).

Signal and parameter list

Chapter overview

This chapter describes all signals and parameters of the DCS550.

Signals

Signals are measured and calculated actual values of the drive. This includes the control-, status-, limit-, faultand alarm words. The drive's signals are available in groups 1 to 9 . None of the values inside these groups is stored in the flash and thus volatile.

Note:

Signals in group 7 can be written to by means of DWL, DCS Control Panel, AP or overriding control.
The following table gives an overview of all signal groups:

Group	Description
1	Physical actual values
2	Speed controller signals
3	Reference actual values
4	Information
5	Analog I/O
6	Drive logic signals
7	Control words
8	Status / limit words
9	Fault / alarm words

Signal / Parameter name	. É	$\stackrel{\text { 㐅 }}{\text { ¢ }}$	\%	苍
1.08 MotTorq (motor torque) Motor torque in percent of MotNomTorque (4.23): - Filtered by means of a 6th order FIR filter (sliding average filter), filter time is 1 mains voltage period. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y		'	'	\bigcirc
2.17 SpeedRefUsed (used speed reference) Used speed reference selected with: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Int. Scaling: (2.29) Type: SI Volatile: Y	'	'	'	튼

Sample of signals

All signals are read-only. However, the overriding control can write to the control words, but it only affects the RAM.
Min., max., def.:
Minimum, maximum and default values are not valid for groups 1 to 9 .
Unit:
Shows the physical unit of a signal, if applicable. The unit is displayed in the DCS Control Panel and DWL.

Group.Index:

Signal and parameter numbers consists of group number and its index.

Integer Scaling:

Communication between the drive and the overriding control uses 16 -bit integer values. The overriding control has to use the information given in integer scaling to read the value of the signal properly.
Example1:
If the overriding control reads MotTorq (1.08) 100 corresponds to 1% torque.
Example2:
If the overriding control reads SpeedRefUsed (2.17) 20,000 equals the speed (in rpm) shown in SpeedScaleAct (2.29).
Type:
A short code shows the data type:
I = 16-bit integer value $(0, \ldots, 65536)$

SI $=16$-bit signed integer value $(-32768, \ldots, 32767)$
C = text string (ENUM)

Volatile:

Y = values are NOT stored in the flash, they will be lost when the drive is de-energized
$\mathrm{N}=$ values are stored in the flash, they will remain when the drive is de-energized

Parameter group list

This chapter explains the function and valid values or selections for all parameters. They are arranged in groups by their function. The following table gives an overview of all parameter groups:

Group	Description
10	Start / stop select
11	Speed reference inputs
12	Constant speeds
13	Analog inputs
14	Digital outputs
15	Analog outputs
16	System control inputs
19	Data storage
20	Limits
21	Start / stop
22	Speed ramp
23	Speed reference
24	Speed control
25	Torque reference
26	Torque reference handling
30	Fault functions
31	Motor temperature
34	DCs Control Panel display
40	PID controller
43	Current control
44	Field excitation
45	Field converter settings
50	Speed measurement
51	Fieldbus
52	Modbus
61	Winder control
62	Diameter adaption
63	Tension torque
64	Write selection
66	Winder program control
83	AP control
84	AP
85	User constants
86	AP outputs
88	Internal
90	Receiving data sets addresses
92	Transmit data sets addresses
97	Measurement
98	Option modules
99	Start-up data

Signal / Parameter name	¢	-	\%	容
20.07 TorqMaxSPC (maximum torque speed controller) Maximum torque limit - in percent of MotNomTorque (4.23) - at the output of the speed controller: TorqRef2 (2.09) Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N	\bigcirc	N	N00	\bigcirc
23.01 SpeedRef (speed reference) Main speed reference input for the speed control of the drive. Can be connected to SpeedRefUsed (2.17) via: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: Y	\bigcirc	응	\bigcirc	튼

Sample of parameters
Parameter changes by DCS Control Panel or DWL are stored in the flash. Changes made by the overriding control are only stored in the RAM.

Min., max., def.:

Minimum and maximum value or selection of parameter.
Default value or default selection of parameter.

Unit:

Shows the physical unit of a parameter, if applicable. The unit is displayed in the DCS Control Panel and

DWL.

Group.Index:

Signal and parameter numbers consists of group number and its index.

Integer Scaling:

Communication between the drive and the overriding control uses 16 -bit integer values. The overriding control has to use the information given in integer scaling to change the value of the parameter properly.
Example1:
If the overriding control writes on TorqMaxSPC (20.07) 100 corresponds to 1%.
Example2:
If the overriding control writes on SpeedRef (23.01) 20,000 equals the speed (in rpm) shown in
SpeedScaleAct (2.29).
Type:
A short code shows the data type:
I = 16-bit integer value ($0, \ldots, 65536$)
SI $=16$-bit signed integer value ($-32768, \ldots, 32767$)
C $=$ text string (ENUM)

Volatile:

$\mathrm{Y}=$ values are NOT stored in the flash, they will be lost when the drive is de-energized
$\mathrm{N}=$ values are stored in the flash, they will remain when the drive is de-energized

Signals

Signal / Parameter name	\cdots	$\stackrel{\times}{\text { ® }}$	$\stackrel{4}{0}$	$\frac{\square}{5}$
Group 1: Physical actual values				
1.01 MotSpeedFilt (filtered motor speed) Filtered actual speed feedback: - Choose motor speed feedback with M1SpeedFbSel (50.03) - Filtered with 1 s and SpeedFiltTime (50.06) Int. Scaling: (2.29) Type: SI Volatile:	1	1	,	튼
1.02 SpeedActEMF (speed actual EMF) Actual speed calculated from EMF. Int. Scaling: (2.29) Type: SI Volatile: Y	1	1	1	튼
1.03 SpeedActEnc (speed actual encoder) Actual speed measured with pulse encoder. Int. Scaling: (2.29) Type: SI Volatile:	,	1	1	튼
1.04 MotSpeed (motor speed) Actual motor speed: - Choose motor speed feedback with M1SpeedFbSel (50.03). - SpeedFiltTime (50.06) Int. Scaling: (2.29) Type: SI Volatile: Y				든

Analog tacho inputs

Signal / Parameter name	E	$\stackrel{\times}{\text { ® }}$	\%	艺
2.07 Unused				
2.08 TorqRef1 (torque reference 1) Relative torque reference value in percent of MotNomTorque (4.23) after limiter for the external torque reference: - TorqMaxTref (20.09) - TorqMinTref (20.10) Int. Scaling: $100=1 \%$ Type: SI Volatile: \quad Y	,	,		ஃ๐
2.09 TorqRef2 (torque reference 2) Output value of the speed controller in percent of MotNomTorque (4.23) after limiter: - TorqMaxSPC (20.07) - TorqMinSPC (20.08) Int. Scaling: $\quad 100=1 \%$ Type: SI Volatile: \quad Y	,			-
2.10 TorqRef3 (torque reference 3) Relative torque reference value in percent of MotNomTorque (4.23) after torque selector: TorqSel (26.01) Int. Scaling: $100==1 \%$ Type: SI Volatile: Y	,			\bigcirc
2.11 TorqRef4 (torque reference 4) $=$ TorqRef3 (2.10) + LoadComp (26.02) in percent of MotNomTorque (4.23). Int. Scaling: $100==1 \%$ Type: SI Volatile: Y	,	,		\bigcirc
2.12 Unused				
2.13 TorqRefUsed (used torque reference) Relative final torque reference value in percent of MotNomTorque (4.23) after torque limiter: - TorqMax (20.05) - TorqMin (20.06) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	'			\bigcirc
2.14-2.15 Unused				
2.16 dv_dt (dv/dt) Acceleration/deceleration (speed reference change) at the output of the speed reference ramp. Int. Scaling: (2.29)/s Type: SI Volatile:	'	,		¢
2.17 SpeedRefUsed (used speed reference) Used speed reference selected with: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Int. Scaling: (2.29) Type: SI Volatile:				튼
2.18 SpeedRef4 (speed reference 4) = SpeedRef3 (2.02) + SpeedCorr (23.04). Int. Scaling: (2.29) Type: SI Volatile:	'			은
2.19 TorqMaxAll (torque maximum all) Relative calculated positive torque limit in percent of MotNomTorque (4.23). Calculated from the smallest maximum torque limit, field weakening and armature current limits: - TorqUsedMax (2.22) - FluxRefFldWeak (3.24) and - M1CurLimBrdg1 (20.12) Int. Scaling: $100==1 \%$ Type: SI Volatile: \quad Y				-
2.20 TorqMinAll (torque minimum all) Relative calculated negative torque limit in percent of MotNomTorque (4.23). Calculated from the largest minimum torque limit, field weakening and armature current limits: - TorqUsedMax (2.22) - FluxRefFldWeak (3.24) and - M1CurLimBrdg2 (20.13) Int. Scaling: $100==1 \%$ Type: SI Volatile: Y				$\bigcirc \bigcirc$
2.21 Unused				

Signal and parameter list

Signal / Parameter name		$\stackrel{\times}{\text { ® }}$	\%	
2.22 TorqUsedMax (used torque maximum) Relative positive torque limit in percent of MotNomTorque (4.23). Selected with: TorqUsedMaxSel (20.18) Connected to torque limiter after TorqRef4 (2.11). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				
2.23 TorqUsedMin (used torque minimum) Relative negative torque limit in percent of MotNomTorque (4.23). Selected with: TorqUsedMinSel (20.19) Connected to torque limiter after TorqRef4 (2.11). Int. Scaling: $100==1 \%$ Type: SI Volatile: \quad Y				
2.24 TorqRefExt (external torque reference) Relative external torque reference value in percent of MotNomTorque (4.23) after torque reference A selector: - TorqRefA (25.01) and - TorqRefA Sel (25.10) Int. Scaling: $\quad 100=1 \% \quad$ Type: SI Volatile: $\quad Y$				
2.25 Unused				
2.26 TorqLimAct (actual used torque limit) Shows parameter number of the actual active torque limit: $0=0 \quad$ no limitation active $1=\mathbf{2 . 1 9}$ TorqMaxAll (2.19) is active, includes current limits and field weakening $2=\mathbf{2 . 2 0}$ TorqMinAll (2.20) is active, includes current limits and field weakening $3=\mathbf{2 . 2 2} \quad$ TorqUsedMax (2.22) selected torque limit is active $4=2.23 \quad$ TorqUsedMin (2.23) selected torque limit is active $5=\mathbf{2 0 . 0 7} \quad$ TorqMaxSPC (20.07) speed controller limit is active $6=\mathbf{2 0 . 0 8}$ TorqMinSPC (20.08) speed controller limit is active $7=20.09 \quad$ TorqMaxTref (20.09) external reference limit is active $8=\mathbf{2 0 . 1 0} \quad$ TorqMinTref (20.10) external reference limit is active $9=\mathbf{2 0 . 2 2}$ TorqGenMax (20.22) regenerating limit is active $10=\mathbf{2 0 . 2 4}$ IndepTorqMaxSPC (20.24) independent speed controller limit is active $11=\mathbf{2 0 . 2 5}$ IndepTorqMinSPC (20.25) independent speed controller limit is active $12=\mathbf{2 . 0 8} \quad$ TorqRef1 (2.08) limits TorqRef2 (2.09), see also TorqSel (26.01) Int. Scaling: $1==1 \quad$ Type: C Volatile: Y				
2.27-2.28 Unused				
2.29 SpeedScaleAct (actual used speed scaling) The value of SpeedScaleAct (2.29) equals 20,000 internal speed units. Thus follows 20,000 speed units $==$ M1SpeedScale (50.01), in case M1SpeedScale (50.01) ≥ 10 or 20,000 speed units $==$ maximum absolute value of M1SpeedMin (20.01) and M1SpeedMax (20.02), in case M1SpeedScale (50.01) < 10. Mathematically speaking: If $(50.01) \geq 10$ then $20,000==(50.01)$ in rpm If $(50.01)<10$ then $20,000==\operatorname{Max}[\|(20.01)\|,\|(20.02)\|]$ in rpm				
2.30 SpeedRefExt1 (external speed reference 1) External speed reference 1 after reference 1 multiplexer: - Ref1Mux (11.02) Int. Scaling: (2.29) Type: SI Volatile: Y				

Signal / Parameter name				$\stackrel{\text { ® }}{ }$		言
2.31 SpeedRefExt2 (external speed reference 2) External speed reference 2 after reference 2 multiplexer: - Ref2Mux (11.12)						
2.32 SpeedRampOut (speed ramp output) Speed reference after ramp Int. Scaling: (2.29) Type: SI Volatile:						

Group 3: Reference actual values
3.01-3.02 Unused
3.03 SquareWave (square wave)

Output signal of the square wave generator, see:
Pot1 (99.15),

- Pot2 (99.16),
- SqrWavePeriod (99.17),
- SqrWaveIndex (99.18) and
- TestSignal (99.19)

Int. Scaling: 1==1 Type: SI Volatile: Y
3.04-3.08 Unused
3.09 PID Out (output PID controller)

PID controller output value in percent of the used PID controller input (see group 40).
Int. Scaling: $100==1 \%$ Type: SI Volatile: Y
3.10 Unused
3.11 CurRef (current reference)

Relative current reference in percent of M1NomCur (99.03) after adaption to field weakening.
Int. Scaling: $100==1 \%$ Type: SI Volatile: Y
3.12 CurRefUsed (used current reference)

Relative current reference in percent of $M 1$ NomCur (99.03) after current limitation:

- M1CurLimBrdg1 (20.12)
- M1CurLimBrdg2 (20.13)
Int. Scaling: $100==1 \%$ Type: SI Volatile: Y , , o
3.13 ArmAlpha (armature α, firing angle)

Firing angle (α).
Int. Scaling: $1==1^{\circ} \quad$ Type: \quad Volatile: $\quad Y \quad$, . . .
3.14-3.19 Unused

3.20 PLL In (phase locked loop input)

Actual measured mains voltage cycle (period) time. Is used as input of the PLL controller. The value should be:

- $1 / 50 \mathrm{~Hz}=20 \mathrm{~ms}=20,000$ or $1 / 60 \mathrm{~Hz}=16.7 \mathrm{~ms}=16,667$

See also DevLimPLL (97.13), KpPLL (97.14) and TfPLL (97.15).
Int. Scaling: $\quad 1==1$ Type: \quad Volatile: Y, \quad, .
3.21 Unused
3.22 CurCtrlintegOut (integral part of current controller output)

1-part of the current controllers output in percent of M1NomCur (99.03).
Int. Scaling: $100==1 \%$ Type: SI Volatile: Y . . a
3.23 Unused
3.24 FluxRefFIdWeak (flux reference for field weakening)

Relative flux reference for speeds above the field weakening point (base speed) in percent of nominal flux. Int. Scaling: $100==1 \%$ Type: SI Volatile: Y Y \circ
3.25 VoltRef1 (EMF voltage reference 1)

Relative EMF voltage reference in percent of M1NomVolt (99.02).
Int. Scaling: $100=1 \%$ Type: SI Volatile: Y
3.26 Unused

Signal and parameter list

Signal / Parameter name	$\dot{\bar{E}}$	$\stackrel{\text { 㐅 }}{\text { ® }}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	5
3.27 FluxRefEMF (flux reference after EMF controller) Relative EMF flux reference in percent of nominal flux after EMF controller. Int. Scaling: $100==1 \%$ Type: SI Volatile:	,			
3.28 FluxRefSum (sum of flux reference) FluxRefSum (3.28) = FluxRefEMF (3.27) + FluxRefFIdWeak (3.24) in percent of nominal flux. Int. Scaling: $100==1 \%$ Type: SI Volatile: Y	1	,		\bigcirc
3.29 Unused				
3.30 FIdCurRefM1 (field current reference) Relative field current reference in percent of M1NomFldCur (99.11). Int. Scaling: $100==1 \%$ Type: SI Volatile:				\bigcirc

Group 4: Information

4.01 FirmwareVer (firmware version) Name of the loaded firmware version. The format is: yyy or -yyy with: yyy = consecutively numbered version and -yyy = single-phase firmware for demo units. Int. Scaling: Type: C Volatile: \quad Y				
4.02 FirmwareType (firmware type) Type of the loaded firmware version. The format is: 55 = Standard firmware Int. Scaling: Type: C Volatile:				
4.03 Unused				
4.04 ConvNomVolt (converter nominal AC voltage measurement circuit) Adjustment of AC voltage measuring channels (SDCS-PIN-F). Read from TypeCode (97.01). Int. Scaling: $1==1 \mathrm{~V}$ Type: I Volatile: Y				
4.05 ConvNomCur (converter nominal DC current measurement circuit) Adjustment of DC current measuring channels (SDCS-PIN-F). Read from TypeCode (97.01). Int. Scaling: 1 == 1 A Type: I Volatile: Y				«
4.06 Mot1FexType (type of field exciter) Field exciter type. Read from M1UsedFexType (99.12):				
4.07-4.13 Unused				
4.14 ConvType (converter type) $\begin{array}{lll}\text { Recognized converter type. Read from TypeCode (97.01): } \\ 0=\text { reserved } & & \\ 1=\text { F1 } & \text { F1 converter } & \\ \\ 2=\text { F2 } & \text { F2 converter } & \\ \\ 3=\text { F3 } & \text { F3 converter } & \\ 4=\text { F4 } & \text { F4 converter } & \\ \text { Int. Scaling: } & 1==1 & \text { Type: C }\end{array}$ Volatile: \quad Y				
4.15 QuadrantType (quadrant type of converter; 1 or 2 bridges) Recognized converter quadrant type. Read from TypeCode (97.01) or set with S BlockBrdg2 (97.07): - Read from TypeCode (97.01) if S BlockBrdg2 (97.07) $=0$ - Read from S BlockBrdg2 (97.07) if S BlockBrdg2 (97.07) $\neq 0$ $0=$ BlockBridge2 bridge 2 blocked ($==2-Q$ operation) 1 = RelBridge 2 bridge 2 released ($==4-Q$ operation), default Int. Scaling: $1==1$ Type: C Volatile: Y				
4.16 ConvOvrCur (converter overcurrent [DC] level) Converter current tripping level. This signal is set during initialization of the drive, new values are shown after the next power-up. Int. Scaling: $1=1 \mathrm{~A} \quad$ Type: $\mathrm{I} \quad$ Volatile: $\quad \mathrm{Y}$				<

Signal / Parameter name	=	¢	\%	艺
4.17 MaxBridgeTemp (maximum bridge temperature) Maximum bridge temperature in degree centigrade. Read from TypeCode (97.01) or set with S MaxBrdgTemp (97.04): - Read from TypeCode (97.01) if S MaxBrdgTemp (97.04) $=0$ - Read from S MaxBrdgTemp (97.04) if S MaxBrdgTemp (97.04) $\neq 0$ The drive trips with F504 ConvOverTemp [FaultWord1 (9.01) bit 3], when MaxBridgeTemp (4.17) is reached. A104 ConvOverTemp [AlarmWord1 (9.06) bit 3] is set, when the actual converter temperature is approximately $5^{\circ} \mathrm{C}$ below MaxBridgeTemp (4.17). Int. Scaling: $1==1^{\circ} \mathrm{C} \quad$ Type: I Volatile: $\quad \mathrm{Y}$,	O
4.18-4.19 Unused				
4.20 Ext IO Stat (external IO status) Status of external I/O: Bit Value Comment B0 11 RAIO-xx detected, see AIO ExtModule (98.06) $0 \quad$ RAIO-xx not existing or faulty B1-B3 reserved				
B4 1 first RDIO-xx detected, see DIO ExtModule1 (98.03) 0 first RDIO-xx not existing or faulty B5 1 second RDIO-xx detected, see DIO ExtModule2 (98.04) B6-B7 0 second RDIO-xx not existing or faulty reserved				
B8-B11 reserved				
B12 reserved B13 1 SDCS-COM-8 detected 0 SDCS-COM-8 faulty B14-B15 reserved Int. Scaling: $1==1$ Type: C Volatile: Y				
4.21 CPU Load (load of processor) The calculating power of the processor is divided into two parts: - CPU Load (4.21) shows the load of the firmware and - ApplLoad (4.22) shows the load of AP and the winder macro. Neither should reach 100\%. Int. Scaling: $10==1 \% \quad$ Type: $\mathrm{I} \quad$ Volatile: \quad Y				\bigcirc
4.22 ApplLoad (load of application) The calculating power of the processor is divided into two parts: - CPU Load (4.21) shows the load of the firmware and - ApplLoad (4.22) shows the load of AP and the winder macro. Neither should reach 100%. Int. Scaling: $10==1 \% \quad$ Type: $\mathrm{I} \quad$ Volatile: \quad Y				\%
4.23 MotTorqNom (motor nominal torque) Calculated nominal motor torque: $\begin{aligned} & \text { MotTorqNom (4.23) }=\frac{60}{2 * \pi} * \frac{[\text { M1NomVolt }(99.02)-\text { M1MotCur }(99.03) * M 1 \text { ArmR(43.10) }] * M 1 \operatorname{NomCur}(99.03)}{\text { M1BaseSpeed }(99.04)} \\ & \text { Int. Scaling: } \quad 1==1 \mathrm{Nm} \quad \text { Type: । } \end{aligned}$				$\frac{E}{Z}$
4.24 ProgressSignal (progress signal for auto tunings) Progress signal for auto tunings used for Startup Assistants. Int. Scaling: $1==1 \%$ Type: Volatile:				20

Signal / Parameter name

1st current controller status word:
Bit Value Comment
B0 1 command FansOn
0 command FansOff; See also trip levels in paragraph Fault signals of this manual
B1 1 one mains phase missing
B2 \quad no action
B3 1 motor heating function active
0 motor heating function not active

B4-5		reserved
B6	1	dynamic braking active / started

$\begin{array}{lll}\text { B6 } & 1 & \text { dynamic braking active / start } \\ & 0 & \text { dynamic braking not active }\end{array}$
B7 1 command to close main contactor: MainContactorOn
0 command to open main contactor: MainContactorOff
 command to close contactor for dynamic braking resistor (armature current is z
command to open contactor for dynamic braking resistor: DynamicBrakingOff
B9 1 drive is generating
10 drive is motoring
B10 1 command to close the US style changeover DC-contactor (close the DC-contact, open the resistor contact): US DCContactorOn
0 command to open the US style changeover DC-contactor (open the DC-contact, close the resistor contact): US DCContactorOff
CurCtrIStat1 (6.03), bit $7-\square=1 \quad$ CurCtrlStat1 (6.03), bit 10
CurCtrlStat1 (6.03), bit $8-\square$
B11 1 firing pulses active (on)
0 firing pulses blocked
B12 1 continuous current
$\begin{array}{lll} & 0 & \text { discontinuous current } \\ \text { B13 } & 1 & \text { zero current detected }\end{array}$
0 current not zero
B14 1 command Trip DC-breaker (continuous signal)
0 no action
B15 1 command Trip DC-breaker (1 s pulse)
0 no action
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: \quad Y
6.04 CurCtrIStat2 (2 ${ }^{\text {nd }}$ current controller status)

2nd current controller status word. The current controller will be blocked, CurRefUsed (3.12) is forced to zero and
ArmAlpha (3.13) is forced to the value of ArmAlphaMax (20.14) if any of the bits is set ($0==\mathrm{OK}$):
Bit Value Meaning
B0 1 overcurrent, F502 ArmOverCur [FaultWord1 (9.01) bit 1]
0 no action
B1 1 mains overvoltage (AC), F513 MainsOvrVolt [FaultWord1 (9.01) bit 12]
0 no action
B2 1 mains undervoltage (AC), F512 MainsLowVolt [FaultWord1 (9.01) bit 11]
0 no action
B3 1 waiting for reduction of EMF to match the mains voltage [see RevVoltMargin (44.21)]
0 no action

B8-9		reserved
B10	1	waiting for zero current
	0	no action

B11 reserved

Group 7: Control words

It is possible to write on all signals in this group - except UsedMCW (7.04) - my means of DWL, DCS Control Panel, AP or overriding control.
7.01 MainCtrIWord (main control word, MCW)

The main control word contains all drive depending commands and can be written to by AP or overriding control:

Bit	Name	Value	Comment
B0	On (Off1N)	1	Command to RdyRun state. With MainContCtrlMode (21.16) = On: Closes contactors, starts field exciter and fans. With MainContCtrIMode (21.16) = On\&Run: RdyRun flag in MainStatWord (8.01) is forced to 1
		0	Command to Off state. Stopping via Off1Mode (21.02).
B1	Off2N	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	No Off2 (Emergency Off / Coast Stop) Command to OnInhibit state. Stop by coasting. The firing pulses are immediately set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. Off2N has priority over OffN3 and On.
B2	Off3N	1	No Off3 (E-stop)
		0	Command to OnInhibit state. Stopping via E StopMode (21.04). Off3N has priority over On.
B3	Run	1	Command to RdyRef state. The firing pulses are released and the drive is running with the selected speed reference.
		0	Command to RdyRun state. Stop via StopMode (21.03).
B4	RampOutZero1		no action
		0	speed ramp output is forced to zero
B5	RampHold	1	no action
		0	freeze (hold) speed ramp
B6	RamplnZero	1	no action
		0	speed ramp input is forced to zero
B7	Reset	1	acknowledge fault indications with the positive edge
		0	no action
B8	Inching1	1	constant speed defined by FixedSpeed1 (23.02), active only with CommandSel (10.01) =
			MainCtrIWord and RampOutZero = RampHold = RampInZero = 0; Inching2 overrides Inching1 alternatively Jog1 (10.17) can be used
		0	no action
B9	Inching2	1	constant speed defined by FixedSpeed2 (23.03), active only with CommandSel (10.01) = MainCtrIWord and RampOutZero = RampHold = RampInZero = 0; Inching2 overrides Inching1 alternatively Jog2 (10.18) can be used
		0	no action

Signal and parameter list

Signal / Parameter name	E	$\stackrel{\times}{\text { ® }}$	\%	艺

(RdyRef state) by means of DriveDirection is not possible.
Int. Scaling: $1==1 \quad$ Type: I Volatile: \quad Y
7.04 UsedMCW (used main control word, UMCW)

Internal used (selected) main control word is read only and contains all drive depending commands. The selection is depending on the drives local/remote control setting, CommandSel (10.01) and HandAuto (10.07).
The bit functionality of bit 0 to bit 10 is the same as the in the MainCtrIWord (7.01). Not all functions are controllable from local control or local I/O mode.
B0-10 see MainCtrIWord (7.01)
B11-15 reserved

Attention:

The UsedMCW (7.04) is write protected, thus it is not possible to write on the used main control word by means of Masterfollower, AP or overriding control.
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: Y
7.05 DO CtrIWord (digital output control word, DOCW)

The DO control word 1 can be written to by AP or overriding control. To connect bits of the DO CtrlWord (7.05) with DO1 to DO8 use the parameters in group 14 (Digital outputs). DO9 to DO12 are directly sent to the extension I/O. Thus, they are only available for AP or overriding control.

Bit	Name	Comment
B0	DO1	this bit has to be send to the digital output via the parameters of group 14 (Digital outputs)
B1	DO2	this bit has to be send to the digital output via the parameters of group 14 (Digital outputs)
B2	DO3	this bit has to be send to the digital output via the parameters of group 14 (Digital outputs)
B3	DO4	this bit has to be send to the digital output via the parameters of group 14 (Digital outputs)
B4-B6 reserved		
B7	DO8	this bit has to be send to the digital output via the parameters of group 14 (Digital outputs)
B8	DO9	this bit is written directly to DO1 of the extension IO defined by DIO ExtModule1 (98.03)
B9	DO10	this bit is written directly to DO2 of the extension IO defined by DIO ExtModule1 (98.03)
B10	D011	this bit is written directly to DO1 of the extension IO defined by DIO ExtModule2 (98.04)
B11	DO12	this bit is written directly to DO2 of the extension IO defined by DIO ExtModule2 (98.04)

B12-15 reserved
Int. Scaling: $1==1 \quad$ Type: I Volatile: Y

Group 8: Status / limit words

8.01 MainStatWord (main status word, MSW)

Signal and parameter list

8.06 DO StatWord (digital outputs status word, DOSW)
Digital output word, shows the value of the digital outputs after inversion:

Signal and parameter list

Signal / Parameter name				
Group 9: Fault / alarm words				
9.01 FaultWord1 (fault word 1)				
Fault word 1:				
Bit Fault text	Fault code and trip level	Commen		
B0 AuxUnderVolt	F501 1	auxiliary	ervoltage	
B1 ArmOverCur	F502 3	armature	rcurrent, ArmOvrC	
B2 ArmOverVolt	F503 3	armature	rvoltage, ArmOvrV	
B3 ConvOverTemp	F504 2	converter MaxBridg	ertemperature, Co mp (4.17)	rat
B4 reserved				
B5 M1OverTemp	F506 2	measured	ertemperature, M1	Sel
B6 M1OverLoad	F507 2	calculated	erload (thermal mod	
B7 I/OBoardLoss	F508 1	I/O board (98.04),	found or faulty, D ExtModule (98.06)	
B8-B10 reserved				
B11 MainsLowVolt	F512 3	mains low (30.23)	(under-) voltage, Pw	
B12 MainsOvrVolt	F513 1	mains ov longer tha	Itage, actual main 0 s	
B13 MainsNotSync	F514 3	mains not	synchronism	
B14 M1FexOverCur	F515 1	field excit	vercurrent, M1Fld	
B15 reserved				
Int. Scaling: $1==1$	Type: I	Volatile:	Y	
9.02 FaultWord2 (fault word 2)				
Fault word 2:				
Bit Fault text	Fault code and trip level	Commen		
B0 ArmCurRipple B1-3 reserved	F517 3	armature	rent ripple, CurRip	
B4 reserved				
B5 SpeedFb	F522 3	selected motor: speed feedback, SpeedFbFItSel (30.17), SpeedFbFItMode (30.36), M1SpeedFbSel (50.03)		
B6 ExtFanAck	F523 4	external fan acknowledge missing MotFanAck (10.06)		
B7 MainContAck	F524 3	main con	or acknowledge m	
B8 TypeCode	F525 1	type code	smatch, TypeCode	
B9 ExternalDI	F526 1	external fa	via binary input, E	
B10 reserved				
B11 FieldBusCom	F528 5	fieldbus c CommMo	munication loss, e (98.02)	
B12-13 reserved				
B14 MotorStalled	F531 3	selected motor: motor stalled, StallTime (30.01), StallSpeed (30.02), StallTorq (30.03)		
B15 MotOverSpeed	F532 3	selected motor: motor overspeed, M1OvrSpeed (30.16)		
Int. Scaling: $1==1$	Type: I	Volatile:	Y	
9.03 FaultWord3 (fault word 3)				
Fault word 3:				
Bit Fault text	Fault code and trip level	Commen		
B0-3 reserved				

Signal and parameter list

Signal and parameter list

Signal / Parameter name

Signal / Parameter name

$16=$ armature voltage measurement circuit open (e.g. not connected) or interrupted, check also current and torque limits
$17=$ armature circuit and/or armature voltage measurement circuit wrongly connected
$18=$ no load connected to armature circuit
$19=$ invalid nominal armature current setting;

- armature current M1MotNomCur (99.03) is set to zero
$20=$ field current does not decrease when the excitation is switched off
$21=$ field current actual doesn't reach field current reference;
- no detection of field resistance;
- field circuit open (e.g. not connected) respectively interrupted
$22=$ no writing of control parameters of speed controller
$23=$ tacho adjustment faulty or not OK or the tacho voltage is too high during autotuning
$24=$ tuning of speed controller, speed feedback assistant or tacho fine tuning not possible due to speed limitation - see e.g. M1SpeedMin (20.01) and M1SpeedMax (20.02)
$25=$ Tuning of speed controller, speed feedback assistant or tacho fine tuning not possible due to voltage limitation. During the tuning of the speed controller, the speed feedback assistant or the tacho fine-tuning base speed [M1BaseSpeed (99.04)] might be reached. Thus full armature voltage [M1NomVolt (99.02)] is necessary. In case the mains voltage is too low to provide for the needed armature voltage the autotuning procedure is canceled.
Check and adapt if needed:
- Mains voltage
- M1NomVolt (99.02)
- M1BaseSpeed (99.04)
$26=$ field weakening not allowed, see M1SpeedFbSel (50.03) and FldCtrIMode (44.01)
27 = discontinuous current limit could not be determined due to low current limitation in M1CurLimBrdg1 (20.12) or M1CurLimBrdg2 (20.13)
$28=$ reserved
$29=$ no field exciter selected, see M1UsedFexType (99.12)
$30=$ reserved
$30=$ DCS Control Panel up- or download not started
$32=$ DCS Control Panel data not up- or downloaded in time
$33=$ reserved
$34=$ DCS Control Panel up -or download checksum faulty
$35=$ DCS Control Panel up- or download software faulty
$36=$ DCS Control Panel up- or download verification failed
37-40 reserved
$41=$ The flash is written to cyclic by AP (e.g. block ParWrite). Cyclic saving of values in the flash will damage it! Do not write cyclic on the flash!
42-49 reserved
Hardware:
$50=$ parameter flash faulty (erase)
$51=$ parameter flash faulty (program)
$52=$ check connector X12 on SDCS-CON-F and connector X12 and X22 on SDCS-PIN-F
53-69 reserved
A132 ParConflict (alarm parameter setting conflict):
$70=$ reserved
$71=$ flux linearization parameters not consistent
$72=$ wrong firing angle limitation (Max and Min value 20.14 and 20.15)
$73=$ armature data not consistent.
Check if:
- M1NomCur (99.03) is set to zero,
- M1NomVolt (99.02) and M1NomCur (99.03) are fitting with the drive. In case they are much smaller than the drive the internal calculation of M1ArmL (43.09) and M1ArmR (43.10) can cause an internal overflow. Set M1ArmL (43.09) and M1ArmR (43.10) to zero.
For M1ArmL (43.09) following limitation is valid:

Signal / Parameter name

$$
\frac{(43.09) * 4096 *(99.03)}{1000 *(99.02)} \leq 32767
$$

For M1ArmR (43.10) following limitation is valid:

$$
\frac{(43.10) * 4096 *(99.03)}{1000 *(99.02)} \leq 32767
$$

74 = reserved
$75=\quad 1^{2} T$-function: M1RecoveryTime (31.12) is set too short compared to M1OvrLoadTime (31.11)
$76=$ reserved
$77=$ Encoder 1 parameters for not consistent. Check:

- SpeedScaleAct (2.29)
- M1EncMeasMode (50.02)
- M1EncPulseNo (50.04)

At scaling speed - see SpeedScaleAct (2.29) - the pulse frequency must be greater than 600 Hz according to following formula:

$$
\begin{aligned}
& f \geq 600 \mathrm{~Hz}=\frac{\text { ppr } * \text { evaluation*speed scaling }}{60 \mathrm{~s}} \\
& f \geq 600 \mathrm{~Hz}=\frac{(50.04)^{*}(50.02)^{*}(2.29)}{60 \mathrm{~s}}
\end{aligned}
$$

E.g. the speed scaling must be $\geq 9 \mathrm{rpm}$ for a pulse encoder with 1024 pulses and $A+-/ B+-$ evaluation.

78-79 reserved

Autotuning:

$80=$ speed does not reach setpoint (EMF control)
$81=$ motor is not accelerating or wrong tacho polarity (tacho / encoder)
$82=$ not enough load (too low inertia) for the detection of speed controller parameters
$83=$ drive not in speed control mode, see TorqSel (26.01) and TorqMuxMode (26.04)
$84=$ winder tunings: measured torque is not constant (ripple $>7,5 \%$)
85-89 reserved

Thyristor diagnosis:

$90=$ shortcut caused by V1
$91=$ shortcut caused by V2
$92=$ shortcut caused by V3
$93=$ shortcut caused by V4
$94=$ shortcut caused by V5
$95=$ shortcut caused by V6
$96=$ thyristor block test failed
$97=$ shortcut caused by V15 or V22
$98=$ shortcut caused by V16 or V23
$99=$ shortcut caused by V11 or V24
$100=$ shortcut caused by V12 or V25
$101=$ shortcut caused by V13 or V26
$102=$ shortcut caused by V14 or V21
$103=$ motor connected to ground
$104=$ armature winding is not connected
105-
120 reserved
Al monitoring:
121 = Al1 below 4 mA
$122=$ Al2 below 4 mA
$123=$ Al3 below 4 mA
$124=$ Al4 below 4 mA
$125=$ Al5 below 4 mA
$126=$ Al6 below 4 mA
$127=$ AITAC below 4 mA
128-
149 reserved

Option modules:
$150=$ fieldbus module missing see CommModule (98.02)
151-
154 reserved
$155=$ RAIO-xx in option slot on SDCS-CON-F missing see group 98
156 reserved
$157=$ RDIO-xx in option slot on SDCS-CON-F missing see group 98
158-
164 reserved
A134 ParComp (alarm parameter compatibility conflict):
$10000 \ldots 19999=$ the parameter with the compatibility conflict can be identified by means of the last 4 digits
ParNoCyc (notice parameter not cyclic):
$20000 \ldots 29999=$ the not cyclic parameter which is being written to by means of a pointer parameter [e.g. DsetXVal1 (90.01)] can be identified by means of the last 4 digits

F548 FwFailure (fault firmware failure):
$20000 \ldots 29999=$ the read only parameter which is being written to by means of a pointer parameter [e.g. DsetXVal1 (90.01)] or AP can be identified by means of the last 4 digits

Thyristor diagnosis:
$30000=$ possibly trigger pulse channels are mixed up
$31 x d d=\quad$ V1 or V11 not conducting
$32 x d d=\quad$ V2 or V12 not conducting
$33 x d d=\quad V 3$ or V13 not conducting
$34 x d d=\quad$ V4 or V14 not conducting
$35 x d d=\quad V 5$ or V15 not conducting
$36 x d d=\quad$ V6 or V16 not conducting
$x=0$: only a single thyristor in bridge 1 is not conducting (e.g. 320dd means $V 2$ respectively $\vee 12$ is not conducting)
$x=1 \ldots 6$: additionally a second thyristor in bridge 1 is no conducting (e.g. 325dd means $V 2$ and $\vee 5$ respectively $V 12$ and
V15 are not conducting)
$\mathrm{dd}=$ don't care, the numbers of this digits do not carry any information about the thyristors of the first bridge.
Example:
36030: means V 16 in bridge 1 and V 23 in bridge 2 are not conducting
3dd1y $=\quad$ V21 not conducting
3dd2y = V22 not conducting
3dd3y = V23 not conducting
3dd4y = V24 not conducting
3dd5y $=\quad$ V25 not conducting
3dd6y = V26 not conducting
$y=0$: only a single thyristor in bridge 2 is not conducting (e.g. 3dd20 means V 22 is not conducting)
$y=1 \ldots 6$: additionally a second thyristor in bridge 2 is no conducting (e.g. 3dd25 means V22 and V25 are not conducting) $\mathrm{dd}=$ don't care, the numbers of this digits do not carry any information about the thyristors of the second bridge.
Example:
36030: means V 16 in bridge 1 and V 23 in bridge 2 are not conducting
A124 SpeedScale (alarm speed scaling):
$40000 \ldots 49999=$ the parameter with the speed scaling conflict can be identified by means of the last 4 digits
F549 ParComp (fault parameter compatibility conflict):
50000 ...59999= the parameter with the compatibility conflict can be identified by means of the last 4 digits Int. Scaling: $1==1$ Type: I Volatile: Y

Parameters

Signal / Parameter name	
Group 10: Start / stop select	

10.01 CommandSel (command selector)

UsedMCW (7.04) selector:

$0=$ Local I/O	Drive is controlled via local I/O.
	Reset (10.03) = DI6; UsedMCW (7.04) bit 7, default
	OnOff (10.15) = DI7; UsedMCW (7.04) bit 0, default and
	StartStop (10.16) = DI8; UsedMCW (7.04) bit 3, default

1 = MainCtrlWord drive is controlled via MainCtrIWord (7.01)
2 = Key
Automatic switchover from MainCtrIWord to Local I/O in case of F528 FieldBusCom [FaultWord2 (9.02) bit 11]. It is still possible to control the drive via local I/O. OnOff1 (10.15) = DI7; UsedMCW (7.04) bit 0, default and StartStop (10.16) = DI8; UsedMCW (7.04) bit 3, default. The used speed reference is set by means of FixedSpeed1 (23.02).

Notes:

- Local control mode has higher priority than the selection made with CommandSel (10.01)
- The commands Off2 (10.08), E Stop (10.09) and Reset (10.03) are always active (in case they are assigned) regardless of CommandSel (10.01) setting.
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
10.02 Direction (direction of rotation)

Binary signal for Direction. Direction (10.02) allows to change the direction of rotation by negating the speed reference in remote operation:
0 = NotUsed default
1 = DI1 $\quad 1=$ Reverse, $0=$ Forward
2 = DI2 $\quad 1=$ Reverse, $0=$ Forward
3 = DI3 $1=$ Reverse, $0=$ Forward
4 = DI4 $1=$ Reverse, $0=$ Forward
$5=$ DI5 $\quad 1=$ Reverse, $0=$ Forward
6 = DI6 $\quad 1=$ Reverse, $0=$ Forward
7 = DI7 $\quad 1=$ Reverse, $0=$ Forward
8 = DI8 $\quad 1=$ Reverse, $0=$ Forward
9 = DI9 $\quad 1=$ Reverse, $0=$ Forward, only available with digital extension board
10 = DI10 $\quad 1=$ Reverse, $0=$ Forward, only available with digital extension board
11 = DI11 $\quad 1=$ Reverse, $0=$ Forward, only available with digital extension board
$12=$ MCW Bit11 $1=$ Reverse, $0=$ Forward, MainCtrlWord (7.01) bit 11
13 = MCW Bit12 $1=$ Reverse, $0=$ Forward, MainCtrlWord (7.01) bit 12
$14=$ MCW Bit13 $1=$ Reverse, $0=$ Forward, MainCtrlWord (7.01) bit 13
$15=$ MCW Bit14 $1=$ Reverse, $0=$ Forward, MainCtrlWord (7.01) bit 14
$16=$ MCW Bit15 $1=$ Reverse, $0=$ Forward, MainCtrlWord (7.01) bit 15
Int. Scaling: $1==1$
Type: C Volatile: N

To give On and Run at the same time set OnOff1 (10.15) = StartStop (10.16).
Int. Scaling: $1==1 \quad$ Type: C Volatile: N

Signal / Parameter name							
10.22 DynBrakeAck (dynamic braking acknowledge) The drive sets A105 DynBrakeAck [AlarmWord1 (9.06) bit 4] if a digital input for dynamic braking is selected and the acknowledge (dynamic braking active) is still present when On [UsedMCW (7.04) bit 3] is set. Selections see MainContAck (10.21). A105 DynBrakeAck [AlarmWord1 (9.06) bit 4] should prevent the drive to be started while dynamic braking is active. Int. Scaling: $1==1 \quad$ Type: C Volatile: N							
10.23 DC BreakAck The drive sets A103 and the acknowledge The motor will coast Int. Scaling: $1==1$	reakAck [A sing. Sele DC Break Type:	Word1 (9. s see Main [AlarmW Volatile:	2] if a digital Ack (10.21). 9.06) bit 2] is				
10.24 Unused							
10.25 DIIInvert (invert digital input 1) Inversion selection for digital input 1: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \\ & \text { Int. Scaling: } \quad 1==1 \end{aligned} \quad \text { Type: } \mathrm{C} \quad \text { Volatile: } \quad \mathrm{N}$							
10.26 DI2Invert (invert digital input 2) Inversion selection for digital input 2 : $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \\ & \text { Int. Scaling: } \quad 1==1 \end{aligned} \quad \text { Type: } \mathrm{C} \quad \text { Volatile: } \quad \mathrm{N}$							
10.27 DI3Invert (invert digital input 3) Inversion selection for digital input 3: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \\ & \text { Int. Scaling: } \quad 1==1 \end{aligned} \quad \text { Type: } \mathrm{C} \quad \text { Volatile: } \quad \mathrm{N}$							
10.28 DI4Invert (invert digital input 4) Inversion selection for digital input 4: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \\ & \text { Int. Scaling: } \quad 1==1 \end{aligned} \quad \text { Type: } \mathrm{C} \quad \text { Volatile: } \quad \mathrm{N}$							
10.29 DI5Invert (invert digital input 5) Inversion selection for digital input 5:$\begin{aligned} & 0=\text { Direct } \\ & 1 \text { = Inverted } \\ & \text { Int. Scaling: } \quad 1==1 \end{aligned} \quad \text { Type: } \mathrm{C} \quad \text { Volatile: } \quad \mathrm{N}$							
10.30 DI6Invert (invert digital input 6) Inversion selection for digital input 6: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \\ & \text { Int. Scaling: } \quad 1==1 \end{aligned} \quad \text { Type: } \mathrm{C} \quad \text { Volatile: } \quad \mathrm{N}$							
10.31 DI7Invert (inv Inversion selection fo $0=$ Direct 1 = Inverted Int. Scaling: $1==1$	ital input al input 7: Type:	Volatile:	N				
10.32 DI8Invert (inv Inversion selection fo $0=$ Direct 1 = Inverted Int. Scaling: $1==1$	ital input al input 8: Type:	Volatile:	N				

12.02 ConstSpeed1 (constant speed 1)

Defines constant speed 1 in rpm. The constant speed can be connected by AP.
Internally limited from: -(2.29)* $\frac{32767}{20000} r p m$ to (2.29)* $\frac{32767}{20000} r p m$
Int. Scaling: (2.29) Type: SI Volatile: N

13.01 Al1HighVal (analog input 1 high value)

$+100 \%$ of the input signal connected to analog input 1 is scaled to the voltage in Al1HighVal (13.01).
Example:
In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of analog input 1 should equal $\pm 250 \%$ of TorqRefExt (2.24), set:

- TorqRefA Sel (25.10) = Al1
- ConvModeAl1 (13.03) $= \pm \mathbf{1 0}$ V Bi,
- Al1HighVal (13.01) $=4000 \mathrm{mV}$ and
- Al1LowVal (13.02) $=-4000 \mathrm{mV}$

Note:

To use current please set the jumper on the SDCS-CON-F accordingly and calculate 20 mA to 10 V . Int. Scaling: $1==1 \mathrm{mV}$ Type: I Volatile: N
13.02 Al1LowVal (analog input 1 low value)
-100% of the input signal connected to analog input 1 is scaled to the voltage in AIILowVal (13.02).
Notes:

- Al1LowVal (13.02) is only valid if ConvModeAI1 (13.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$.
- To use current please set the jumper on the SDCS-CON-F accordingly and calculate 20 mA to 10 V .

Int. Scaling: $1==1 \mathrm{mV}$ Type: SI Volatile: N
13.03 ConvModeAI1 (conversion mode analog input 1)

The distinction between voltage and current is done via jumpers on the SDCS-CON-F:
$0= \pm 10 \mathrm{~V} \mathrm{Bi} \quad-10 \mathrm{~V}$ to $10 \mathrm{~V} /-20 \mathrm{~mA}$ to 20 mA bipolar input, default
$1=0 \mathrm{~V}-10 \mathrm{~V}$ Uni $\quad 0 \mathrm{~V}$ to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 mA unipolar input
$2=\mathbf{2 V}-10 \mathrm{~V}$ Uni $\quad 2 \mathrm{~V}$ to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 mA unipolar input
$3=5 \mathrm{~V}$ Offset $\quad 5 \mathrm{~V} / 10 \mathrm{~mA}$ offset in the range 0 V to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.)
$4=6 \mathrm{~V}$ Offset $\quad 6 \mathrm{~V} / 12 \mathrm{~mA}$ offset in the range 2 V to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.)
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
13.04 FilterAl1 (filter time analog input 1)

Analog input 1 filter time. The hardware filter time is $\leq 2 \mathrm{~ms}$.
Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N
13.05 Al2HighVal (analog input 2 high value)
$+100 \%$ of the input signal connected to analog input 2 is scaled to the voltage in Al2HighVal (13.05).

Note:

To use current please set the jumper on the SDCS-CON-F accordingly and calculate 20 mA to 10 V .
Int. Scaling: $1==1 \mathrm{mV}$ Type: I Volatile: N
13.06

AI2LowVal (analog input 2 low value)
-100% of the input signal connected to analog input 2 is scaled to the voltage in AI2LowVal (13.06).

Notes:

- AI2LowVal (13.06) is only valid if ConvModeAI2 (13.07) $= \pm 10 \mathrm{~V} \mathrm{Bi}$.
- To use current please set the jumper on the SDCS-CON-F accordingly and calculate 20 mA to 10 V . Int. Scaling: $1==1 \mathrm{mV}$ Type: SI Volatile: N

Signal / Parameter name		
13.07 ConvModeAl2 (conversion mode analog input 2) The distinction between voltage and current is done via jumpers on the SDCS-CON-F:	\cdots	
13.08 FilterAl2 (filter time analog input 2) Analog input 2 filter time. The hardware filter time is $\leq 2 \mathrm{~ms}$. Int. Scaling: $1==1 \mathrm{~ms}$ Type: Volatile:	$\bigcirc \bigcirc$	
13.09 Al3HighVal (analog input 3 high value) $+100 \%$ of the input signal connected to analog input 3 is scaled to the voltage in Al3HighVal (13.09). Note: Can only be used for voltage measurement. Int. Scaling: $1==1 \mathrm{mV}$ Type: I Volatile: N		8
13.10 Al3LowVal (analog input 3 low value) -100% of the input signal connected to analog input 3 is scaled to the voltage in AI3LowVal (13.10). Notes: - AI3LowVal (13.10) is only valid if ConvModeAI3 (13.11) $= \pm 10 \mathrm{~V}$ Bi. - Can only be used for voltage measurement. Int. Scaling: $1==1 \mathrm{mV}$ Type: SI Volatile: N	$\bigcirc{ }_{8}^{\circ} \mathrm{O}$	O
13.11 ConvModeAl3 (conversion mode analog input 3) Analog input 3 on the SDCS-CON-F is only working with voltage:		-
13.12 FilterAl3 (filter time analog input 3) Analog input 3 filter time. The hardware filter time is $\leq 2 \mathrm{~ms}$. Int. Scaling: $1==1 \mathrm{~ms}$ Type: Volatile:	$\bigcirc \bigcirc$	
13.13 Al4HighVal (analog input 4 high value) $+100 \%$ of the input signal connected to analog input 4 is scaled to the voltage in Al4HighVal (13.13). Note: Can only be used for voltage measurement. Int. Scaling: $1==1 \mathrm{mV}$ Type: I Volatile: N		\bigcirc
13.14 Al4LowVal (analog input 4 low value) -100% of the input signal connected to analog input 4 is scaled to the voltage in Al4LowVal (13.14). Notes: - AI3LowVal (13.14) is only valid if ConvModeAI4 (13.15) $= \pm 10 \mathrm{~V} \mathrm{Bi}$. - Can only be used for voltage measurement. Int. Scaling: $1==1 \mathrm{mV}$ Type: SI Volatile: N	$\underset{1}{\circ}$	8

[^3]- If DO1Index (14.01) $=801$ (main status word) and DO1BitNo (14.02) $=1$ (RdyRun) digital output 1 is high when the drive is RdyRun.
- If DO1 Index (14.01) = -801 (main status word) and DO1BitNo (14.02) $=3$ (Tripped) digital output 1 is high when the drive is not faulty.
Digital output 1 default setting is: command FansOn CurCtrIStat1 (6.03) bit 0.
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
14.02 DO1BitNo (digital output 1 bit number)

Bit number of the signal/parameter selected with DO1Index (14.02).
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: N
14.03 DO2Index (digital output 2 index)

Digital output 2 is controlled by a selectable bit - see DO2BitNo (14.04) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $x x=$ group and $y=$ index. Int. Scaling: $1==1 \quad$ Type: SI Volatile: N

14.04 DO2BitNo (digital output 2 bit number)

Bit number of the signal/parameter selected with DO2Index (14.03).
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: N
14.05 DO3Index (digital output 3 index)

Digital output 3 is controlled by a selectable bit - see DO3BitNo (14.06) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $x x=$ group and $y=$ index. Digital output 3 default setting is: command MainContactorOn CurCtrlStat1 (6.03) bit 7.
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
14.06 DO3BitNo (digital output 3 bit number)

Bit number of the signal/parameter selected with DO3Index (14.05).

14.07 DO4Index (digital output 4 index)

Digital output 4 is controlled by a selectable bit - see DO4BitNo (14.08) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
14.08 DO4BitNo (digital output 4 bit number)

Bit number of the signal/parameter selected with DO4Index (14.07).

14.09-14.14 Unused
14.15 DO8Index (digital output 8 index)

Digital output 8 is controlled by a selectable bit - see DO8BitNo (14.16) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Digital output 8 default setting is: command MainContactorOn CurCtrlStat1 (6.03) bit 7
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N

Signal / Parameter name	高 $\stackrel{\times}{\text { ¢ }}$
14.16 DO8BitNo (digital output 8 bit number)	
Bit number of the signal/parameter selected with DO8/ndex (14.15).	
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile:	$0 \stackrel{6}{2}$
Group 15: Analog outputs	

15.01 IndexAO1 (analog output 1 index)

Analog output 1 is controlled by a source (signal/parameter) selected with IndexAO1 (15.01). The format is xxyy, with: - = negate analog output, $x x=$ group and $y \mathbf{y}=$ index.
Int. Scaling: $1==1$ Type: SI Volatile: N

15.02 CtrIWordAO1 (control word analog output 1)

Analog output 1 can be written to via CtrlWordAO1 (15.02) using AP or overriding control if IndexAO1 (15.01) is set to zero. Further description see group 19 Data Storage.
Int. Scaling: $1==1$ Type: SI Volatile: Y
15.03 ConvModeAO1 (convert mode analog output 1)

Analog output 1 signal offset:
$0= \pm 10 \mathrm{VBi}$
-10 V to 10 V bipolar output, default
$1=0 \mathrm{~V}-10 \mathrm{~V}$ Uni $\quad 0 \mathrm{~V}$ to 10 V unipolar output
$2=\mathbf{2 V}-10 \mathrm{~V}$ Uni $\quad 2 \mathrm{~V}$ to 10 V unipolar output
$3=5 \mathrm{~V}$ Offset $\quad 5 \mathrm{~V}$ offset in the range 0 V to 10 V for testing or indication of bipolar signals (e.g. torque,
$4=6 \mathrm{~V}$ Offset speed, etc.)
6 V offset in the range 2 V to 10 V for testing or indication of bipolar signals (e.g. torque, speed, etc.)
$5=\mathbf{0 V}-10 \mathrm{~V}$ Abs absolute 0 V to 10 V unipolar output (negative values are shown positive)
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
15.04 FilterAO1 (filter analog output 1)

Analog output 1 filter time.
Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N
15.05 ScaleAO1 (scaling analog output 1)

100 \% of the signal/parameter selected with IndexAO1 (15.01) is scaled to the voltage in ScaleAO1 (15.05). Example:
In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of analog output 1 should equal $\pm 250 \%$ of TorqRefUsed (2.13), set:

- IndexAO1 (15.01) = 213,
- ConvModeAO1 (15.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$ and
- ScaleAO1 (15.05) $=4000 \mathrm{mV}$

Int. Scaling: $1==1 \mathrm{mV}$ Type: । Volatile: N
15.06 IndexAO2 (analog output 2 index)

Analog output 2 is controlled by a source (signal/parameter) selected with IndexAO2 (15.06). The format is xxyy, with: - = negate analog output, $x x=$ group and $y \mathbf{y}=$ index.
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N

15.07 CtrIWordAO2 (control word analog output 2)

Analog output 2 can be written to via CtrlWordAO2 (15.07) using AP or overriding control if IndexAO2 (15.06) is set to zero. Further description see group 19 Data Storage.
Int. Scaling: $1==1$ Type: SI Volatile: Y
15.08 ConvModeAO2 (convert mode analog output 2)

Analog output 2 signal offset:
$0= \pm 10 \mathrm{VBi}$
-10 V to 10 V bipolar output, default
$1=0 \mathrm{~V}-10 \mathrm{~V}$ Un
0 V to 10 V unipolar output
$2=2 \mathrm{~V}-10 \mathrm{~V}$ Uni
$3=5 \mathrm{~V}$ Offset
2 V to 10 V unipolar output
$4=6 \mathrm{~V}$ Offset
5 V offset in the range 0 V to 10 V for testing or indication of bipolar signals (e.g. torque, speed, etc.)
$4=6 \mathrm{~V}$ Offset $\quad 6 \mathrm{~V}$ offset in the range 2 V to 10 V for testing or indication of bipolar signals (e.g. torque,
$5=0 \mathrm{~V}$ speed, etc.)
Int. Scaling: $1==1$ Type: C Volatile: N
absolute 0 V to 10 V unipolar output (negative values are shown positive)

Signal / Parameter name			
15.09 FilterAO2 (filter analog output 2) Analog output 2 filter time. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile:			
15.10 ScaleAO2 (scaling analog output 2) 100% of the signal/parameter selected with IndexAO2 (15.06) is scaled to the voltage in ScaleAO2 (15.10). Int. Scaling: $1==1 \mathrm{mV}$ Type: I Volatile: N			
15.11 IndexAO3 (analog output 3 index) Analog output 3 is controlled by a source (signal/parameter) selected with IndexAO3 (15.11). The format is xxyy, with: - = negate analog output, $x x=$ group and $y \mathbf{y}=$ index. Int. Scaling: $1==1 \quad$ Type: SI Volatile: N			
15.12 CtrIWordAO3 (control word analog output 3 Analog output 3 can be written to via CtrIWordAO3 (15.12) using AP or overriding control if IndexAO3 (15.11) is set to zero. Further description see group 19 Data Storage. Int. Scaling: $1==1 \quad$ Type: SI Volatile: Y	c\|c	0	
15.13 ConvModeAO3 (convert mode analog output 3) Analog output 3 signal offset: $0=0 \mathrm{~mA}-20 \mathrm{~mA}$ Uni 0 mA to 20 mA unipolar output $1=4 \mathrm{~mA}-20 \mathrm{~mA}$ Uni 4 mA to 20 mA unipolar output, default $2=10 \mathrm{~mA}$ Offset $\quad 10 \mathrm{~mA}$ offset in the range 0 mA to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) $3=12 \mathrm{~mA}$ Offset $\quad 12 \mathrm{~mA}$ offset in the range 4 mA to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) $4=0 \mathrm{~mA}-20 \mathrm{~mA}$ Abs absolute 0 mA to 20 mA unipolar output (negative values are shown positive) Int. Scaling: $1==1$ Type: C Volatile: N			
15.14 FilterAO3 (filter analog output 3) Analog output 3 filter time. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile:			$\stackrel{\leftrightarrow}{E}$
15.15 ScaleAO3 (scaling analog output 3) 100 \% of the signal/parameter selected with IndexAO3 (15.11) is scaled to the current in ScaleAO3 (15.15). Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: N	\bigcirc	산	E
15.16 IndexAO4 (analog output 4 index) Analog output 4 is controlled by a source (signal/parameter) selected with IndexAO4 (15.16). The format is xxyy, with: - = negate analog output, $x x=$ group and $y y=$ index. Int. Scaling: $1==1 \quad$ Type: SI Volatile: N			
15.17 CtrIWordAO4 (control word analog output 4) Analog output 4 can be written to via CtrIWordAO4 (15.17) using AP or overriding control if IndexAO4 (15.17) is set to zero. Further description see group 19 Data Storage. Int. Scaling: $1==1 \quad$ Type: SI Volatile: Y		0	
15.18 ConvModeAO4 (convert mode analog output 4) Analog output 4 signal offset: $0=0 \mathrm{~mA}-20 \mathrm{~mA}$ Uni 0 mA to 20 mA unipolar output $1=4 \mathrm{~mA}-20 \mathrm{~mA}$ Uni 4 mA to 20 mA unipolar output, default $2=10 \mathrm{~mA}$ Offset $\quad 10 \mathrm{~mA}$ offset in the range 0 mA to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) $3=12 \mathrm{~mA}$ Offset $\quad 12 \mathrm{~mA}$ offset in the range 4 mA to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) $4=0 \mathrm{~mA}-20 \mathrm{~mA}$ Abs absolute 0 mA to 20 mA unipolar output (negative values are shown positive) Int. Scaling: $1==1$ Type: Volatile: N			
15.19 FilterAO4 (filter analog output 4) Analog output 4 filter time. Int. Scaling: $1==1 \mathrm{~ms}$ Type: $1 \quad$ Volatile:			$\mathscr{}$
15.20 ScaleAO4 (scaling analog output 4) 100% of the signal/parameter selected with IndexAO4 (15.16) is scaled to the current in ScaleAO4 (15.20). Int. Scaling: $1==1$ Type: Volatile: N			『

Signal / Parameter name

Group 16: System control inputs

16.01 Unused

16.02 ParLock (parameter lock)

The user can lock all parameters by means of ParLock (16.02) and SysPassCode (16.03). To lock parameters set SysPassCode (16.03) to the desired value and change ParLock (16.02) from Open to Locked. Unlocking of parameters is only possible if the proper pass code (the value that was present during locking) is used. To open parameters set SysPassCode (16.03) to the proper value and change ParLock (16.02) from Locked to Open.
After the parameters are locked or opened the value in SysPassCode (16.03) is automatically changed to 0 : $0=$ Open parameter change possible, default 1 = Locked parameter change not possible Int. Scaling: $1==1 \quad$ Type: C Volatile: N
16.03 SysPassCode (system pass code)

The SysPassCode (16.03) is a number between 1 and 30,000 to lock all parameters by means of ParLock (16.02). After using Open or Locked SysPassCode (16.03) is automatically set back to zero.

Attention:

Do not forget the pass code!
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: \quad Y
16.04 LocLock (local lock)

Local control can be disabled by setting LocLock (16.04) to True. If LocLock (16.04) is released in local control, it becomes valid after the next changeover to remote control. No pass code is required to change LocLock (16.04):
$0=$ False local control released, default
$\begin{array}{llll}1 \text { = True } & \text { local control blocked } & \\ \text { Int. Scaling: } & 1==1 & \text { Type: C } & \text { Volatile: }\end{array}$
16.05 Unused
16.06 ParAppISave (save parameters)

If parameters are written to cyclic, e.g. from an overriding control, they are only stored in the RAM and not in the flash. By means of ParAppISave (16.06), all parameter values are saved from the RAM into the flash:
$0=$ Done parameters are saved, default
1 = Save saves the actual used parameters into the flash
After the action is finished ParApp/Save (16.06) is changed back to Done. This will take max. 1 second.

Note:

Do not use the parameter save function unnecessarily

Note:

Parameters changed by DCS Control Panel or commissioning tools are immediately saved into the flash.
Int. Scaling: $1==1 \quad$ Type: C Volatile: Y

16.07-16.10 Unused

16.11 SetSystemTime (set the drive's system time)

Sets the time of the converter in minutes. The system time can be either set by means of SetSystemTime (16.11) or via the DCS Control Panel.

Int. Scaling: $1==1 \mathrm{~min}$ Type: \quad Volatile: Y
16.12-16.13 Unused
16.14 ToolLinkConfig (tool link configuration)

The communication speed of the serial communication for the commissioning tool and the application program tool can be selected with ToolLinkConfig (16.14):
$0=9600 \quad 9600$ Baud
$1=19200 \quad 19200$ Baud
$2=38400 \quad 38400$ Baud, default
$3=57600 \quad 57600$ Baud
$4=115200 \quad 115200$ Baud
If ToolLinkConfig (16.14) is changed its new value is taken over after the next power up.
Int. Scaling: $1==1 \quad$ Type: C Volatile: N

O

\qquad

Signal / Parameter name
 Group 19: Data storage

 듵This parameter group consists of unused parameters for linking, testing and commissioning purposes. Example1:
A value can be send from the overriding control to the drive via group 90 to individual parameters in group 19. The parameters of group 19 can be read with the DCS Control Panel, DWL and AP.

Example2:

A value can be send from the drive to the overriding control from individual parameters in group 19 via group 92. The parameters of group 19 can be written to with the DCS Control Panel, DWL and AP.

Note:

This parameter group can be used as well for reading/writing analog inputs/outputs.

19.01 Data1 (data container 1)

Data container 1 (see group description above). This data container is of is of the type retain. Its value will be saved when the drive is de-energized. Thus, it will not lose its value.

Signal / Parameter name

20.03 M1ZeroSpeedLim (zero speed limit)

When the Run command is removed [set UsedMCW (7.04) bit 3 to zero], the drive will stop as chosen by StopMode (21.03). As soon as the actual speed reaches the limit set by M1ZeroSpeedLim (20.03) the motor will coast independent of the setting of StopMode (21.03). Existing brakes are closed (applied). While the actual speed is in the limit, ZeroSpeed [AuxStatWord (8.02) bit 11] is high.

Note:

In case FlyStart (21.10) = StartFrom0 and if the restart command comes before zero speed is reached A137 SpeedNotZero [AlarmWord3 (9.08) bit 4] is generated.
Internally limited from: $0 r p m$ to (2.29)rpm

20.04 Unused
20.05 TorqMax (maximum torque)

Maximum torque limit - in percent of MotNomTorque (4.23) - for selector TorqUsedMaxSel (20.18).

Note:

Note:
The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid.
Int. Scaling: $100=1 \%$ Type: SI Volatile: N
20.06 TorqMin (minimum torque)

Minimum torque limit - in percent of MotNomTorque (4.23) - for selector TorqUsedMinSel (20.19).

Note:

The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the largest value is valid.
Int. Scaling: $100==1 \%$ Type: SI Volatile: N
Int. Scaling: $100==1 \%$ Type: SI Volatile: $\quad \mathrm{N}$
Maximum torque limit - in percent of MotNomTorque (4.23) - at the output of the speed controller:

- TorqRef2 (2.09)

Note:

The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid.
Int. Scaling: $100=1 \%$ Type: SI Volatile: N
20.08 TorqMinSPC (minimum torque speed controller)

Minimum torque limit - in percent of MotNomTorque (4.23) - at the output of the speed controller.

- TorqRef2 (2.09)

Note:

The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the largest value is valid.
Int. Scaling: $100=1 \%$ Type: SI Volatile: N
M1SpeedMax (20.02) is must be set in the range of 0.625 to 5 times of M1BaseSpeed (99.04). If the scaling is out of range A124 SpeedScale [AlarmWord2 (9.07) bit 7] is generated.
M1SpeedMax (20.02) is also applied to SpeedRef4 (2.18) to avoid exceeding the speed limits by means of SpeedCorr (23.04).
. Scaling: (2.29) Type: SI Volatile: N
? ? Moo

Signal / Parameter name			
20.09 TorqMaxTref (maximum torque of torque reference A/B) Maximum torque limit - in percent of MotNomTorque (4.23) - for external references: - TorqRefA (25.01) - TorqRefB (25.04) Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100==1 \%$ Type: SI Volatile: N		N0	
20.10 TorqMinTref (minimum torque of torque reference A/B) Minimum torque limit - in percent of MotNomTorque (4.23) - for external references: - TorqRefA (25.01) - TorqRefB (25.04) Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the largest value is valid. Int. Scaling: $100==1 \%$ Type: SI Volatile: N		Non	
20.11 Unused			
20.12 M1CurLimBrdg1 (current limit of bridge 1) Current limit bridge 1 in percent of M1NomCur (99.03). Notes: - Setting M1CurLimBrdg1 (20.12) to 0% disables bridge 1. - The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100==1 \%$ Type: SI Volatile: N			
20.13 M1CurLimBrdg2 (current limit of bridge 2) Current limit bridge 2 in percent of M1NomCur (99.03). Notes: Setting M1CurLimBrdg2 (20.13) to 0 \% disables bridge 2. - The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the largest value is valid. - M1CurLimBrdg2 (20.13) is internally set to 0% if QuadrantType (4.15) $=2-\mathrm{Q}$ (2-Q drive). Thus, do not change the default setting for 2-Q drives. Int. Scaling: $100==1 \%$ Type: SI Volatile: N	$\stackrel{\sim}{\sim}$	은	
20.14 ArmAlphaMax (maximum firing angle) Maximum firing angle (α) in degrees. The maximum firing angel can be forced using AuxCtrIWord2 (7.03) bit 7. Int. Scaling: $1==1$ deg Type: SI Volatile: N			-
20.15 ArmAlphaMin (minimum firing angle) Minimum firing angle (α) in degrees. Int. Scaling: $1==1 \mathrm{deg}$ Type: SI Volatile:		$\stackrel{\square}{\square}$	앙
20.16-20.17 Unused			
20.18 TorqUsedMaxSel (maximum used torque selector) TorqUsedMax (2.22) selector:	辰	$\stackrel{セ 0}{O}$	

21．14 FanDly（fan delay）
After the drive has been switched off［UsedMCW（7．04）bit 0 On＝0］，both fans（motor and converter）mustn＇t switched off before FanDly（21．14）has elapsed．If motor or converter overtemperature is pending，the delay starts after the temperature has dropped below the overtemperature limit．
Int．Scaling： $1==1 \mathrm{~s}$ Type：। Volatile：N \quad－

21．15 Unused
21．16 MainContCtrIMode（main contactor control mode）
MainContCtrlMode（21．16）determines the reaction to On and Run commands［UsedMCW（7．04）bits 0 and 3］：
$0=$ On main contactor closes with $\mathbf{O n}=1$ ，default
1 ＝On\＆Run
$2=$ DCcontact
main contactor closes with $\mathbf{O n}=1$ ，default
main contactor closes with $\mathbf{O n}=$ Run $=1$
If a DC－breaker is used as a main contactor，it will be closed with $\mathrm{On}=1$ ．Additionally the armature voltage measurements are adapted to an open DC－breaker by clamping SpeedActEMF（1．02），ArmVoltActRel（1．13），ArmVoltAct（1．14）and EMF VoltActRel （1．17）to zero when the drive is Off．
The clamping is released：
－either 100 ms after an On command（MCW bit 0）is given in case DCBreakAck （10．23）$=$ NotUsed or
－when using the DC－breaker acknowledge with DCBreakAck（10．23）＝DIx until the acknowledge signal indicates that the DC－breaker closed．

Note：

The DC－breaker（US style）K1．1 is a special designed DC－breaker with one normally closed contact for the dynamic braking resistor RB and two normally open contacts for C1 and D1．The DC－breaker should be controlled by CurCtrIStart1（6．03）bit 10．The acknowledge signal can be connected to either MainContAck （10．21）or DCBreakAck（10．23）：

Group 22: Speed ramp
22.01 AccTime1 (acceleration time 1)

The time within the drive will accelerate from zero speed to SpeedScaleAct (2.29). AccTime1 (22.01) can be released with Ramp2Sel (22.11).
Int. Scaling: $100=1$ s Type: I Volatile: N
22.02 DecTime1 (deceleration time 1)

The time within the drive will decelerate from SpeedScaleAct (2.29) to zero speed. DecTime1 (22.02) can be released with Ramp2Sel (22.11).
Int. Scaling: $100==1 \mathrm{~s}$ Type: I Volatile: N
22.03 Unused
22.04 E StopRamp (emergency stop ramp)

The time within the drive will decelerate from SpeedScaleAct (2.29) to zero speed. When emergency stop is released and E StopMode (21.04) = RampStop or as reaction to a fault of trip level 4 and FaultStopMode (30.30) = RampStop.

Int. Scaling: $10=1 \mathrm{~s} \quad$ Type: $\mathrm{I} \quad$ Volatile: N
22.05 ShapeTime (shape time)

Speed reference softening time. This function is bypassed during an emergency stop:

Signal / Parameter name			
22.07 VarSlopeRate (variable slope rate) Variable slope is used to control the slope of the speed ramp during a speed reference change. It is active only with VarSlopeRate (22.07) $\neq 0$. Variable slope rate and the drive's internal ramp are connected in series. Thus follows that the ramp times - AccTime1 (22.01) and DecTime1 (22.02) - have to be faster than the complete variable slope rate time. VarSlopeRate (22.07) defines the speed ramp time \mathbf{t} for the speed reference change \mathbf{A} :			
$t=$ cycle time of the overriding control (e.g. speed reference generation) A = speed reference change during cycle time t Note: In case the overriding control system's cycle time of the speed reference and VarSlopeRate (22.07) are equal, the shape of SpeedRef3 (2.02) is a strait line. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N			
22.08 BalRampRef (balance ramp reference) The output of the speed ramp can be forced to the value defined by BalRampRef (22.08). The function is released by setting AuxCtrIWord (7.02) bit $3=1$. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: N			
22.09 AccTime2 (acceleration time 2) The time within the drive will accelerate from zero speed to SpeedScaleAct (2.29). AccTime2 (22.09) can be released with Ramp2Sel (22.11). Int. Scaling: $100==1 \mathrm{~s}$ Type: I Volatile: N			
22.10 DecTime2 (deceleration time 2) The time within the drive will decelerate from SpeedScaleAct (2.29) to zero speed. DecTime2 (22.10) can be released with Ramp2Sel (22.11). Int. Scaling: $100=1 \mathrm{~s}$ Type: I Volatile: N			

Signal / Parameter name			
23.03 FixedSpeed2 (fixed speed 2) FixedSpeed2 (23.03) is specifying a constant speed reference and overrides SpeedRef2 (2.01) at the speed ramps input. It can be released by Jog2 (10.18) or MainCtrIWord (7.01) bit 9. The ramp times are set with JogAccTime (22.12) and JogDecTime (22.13). Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: N	$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 1 \\ & \hline 1 \end{aligned}$		
23.04 SpeedCorr (speed correction) The SpeedCorr (23.04) is added to the ramped reference SpeedRef3 (2.02). Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Note: Since this speed offset is added after the speed ramp, it must be set to zero prior to stopping the drive. Int. Scaling: (2.29) Type: SI Volatile: Y	\bigcirc		
23.05 SpeedShare (speed sharing) Scaling factor SpeedRefUsed (2.17). Before speed ramp. Int. Scaling: $10==1 \%$ Type: SI Volatile:		-	
23.06 SpeedErrFilt (filter for $\Delta \mathbf{n}$) Speed error (Δn) filter time 1. There are three different filters for actual speed and speed error (Δn) : SpeedFiltTime (50.06) is filtering the actual speed and should be used for filter times smaller than 30 ms . - SpeedErrFilt (23.06) and SpeedErrFilt2 (23.11) are filtering the speed error ($\Delta \mathrm{n}$) and should be used for filter times greater than 30 ms . It is recommended to set SpeedErrFilt (23.06) = SpeedErrFilt2 (23.11). Int. Scaling: $1==1 \mathrm{~ms}$ Type: $\mathrm{I} \quad$ Volatile: N			
23.07 Unused			

Idea of Window Control:
The idea of the Window Control is to block the speed controller as long as the speed error ($\Delta \mathrm{n})$ remains within the window set by WinWidthPos (23.08) and WinWidthNeg (23.09). This allows the external torque reference - TorqRef1 (2.08) - to affect the process directly. If the speed error $(\Delta \mathrm{n})$ exceeds the programmed window, the speed controller becomes active and influences the process by means of TorqRef2 (2.09). To release window control set TorqSel (26.01) = Add and AuxCtrIWord (7.02) bit $7=1$.
This function could be called over/underspeed protection in torque control mode:

Note:

to open a window with a width of 100 rpm set WinWidthPos (23.08) $=50 \mathrm{rpm}$ and WinWidthNeg (23.09) $=-50 \mathrm{rpm}$.

23.08 WinWidthPos (positive window width)

Positive speed limit for the window control, when the speed error ($\Delta \mathrm{n}=\mathrm{n}_{\text {ref }}-\mathrm{n}_{\text {act }}$) is positive.
Internally limited from: -(2.29)* $\frac{32767}{20000} r p m$ to (2.29)* $\frac{32767}{20000} r p m$
Int. Scaling: (2.29) Type: I Volatile: N

Signal / Parameter name			
23.09 WinWidthNeg (negative window width) Negative speed limit for the window control, when the speed error ($\Delta \mathrm{n}=\mathrm{n}_{\text {ref }}-\mathrm{n}_{\text {act }}$) is negative. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: I Volatile: N	\bigcirc		
23.10 SpeedStep (speed step) SpeedStep (23.10) is added to the speed error (Δn) at the speed controller's input. The given min./max. values are limited by M1SpeedMin (20.02) and M1SpeedMax (20.02). Internally limited from: $-(2.29) * \frac{32767}{20000} \mathrm{rpm}$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Note: Since this speed offset is added after the speed ramp, it must be set to zero prior to stopping the drive. Int. Scaling: (2.29) Type: SI Volatile: Y	Bo		
23.11 SpeedErrFilt2 ($\mathbf{2}^{\text {nd }}$ filter for $\Delta \mathrm{n}$) Speed error (Δn) filter time 2. There are three different filters for actual speed and speed error (Δn) : SpeedFiltTime (50.06) is filtering the actual speed and should be used for filter times smaller than 30 ms . SpeedErrFilt (23.06) and SpeedErrFilt2 (23.11) are filtering the speed error ($\Delta \mathrm{n}$) and should be used for filter times greater than 30 ms . It is recommended to set SpeedErrFilt (23.06) = SpeedErrFilt2 (23.11). Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N	0		
23.12 Unused			
23.13 AuxSpeedRef (auxiliary speed reference) Auxiliary speed reference input for the speed control of the drive. Can be connected to SpeedRefUsed (2.17) via: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: Y			
23.14 Unused			
23.15 DirectSpeedRef (direct speed reference) Direct speed input is connected to SpeedRef3 (2.02) by means of AuxCtrIWord2 (7.03) bit $10=1$ and replaces the speed ramp output. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Note: Since this speed offset is added after the speed ramp, it must be set to zero prior to stopping the drive. Int. Scaling: (2.29) Type: SI Volatile: Y	$\begin{aligned} & \mathrm{O} \\ & \mathbf{2} \\ & \hline 10 \\ & \hline 1 \end{aligned}$		
23.16 SpeedRefScale (speed reference scaling) Speed reference scaling. After SpeedRef3 (2.02) and before SpeedRef4 (2.18). Int. Scaling: $100==1 \%$ Type: I Volatile:	$\bigcirc \bigcirc$		

Group 24: Speed control

The Speed controller is based on a PID algorithm and is presented as follows:
$T_{\text {ref }(s)}=K p S *\left[\left(n_{\text {ref }(s)}-n_{\text {act }(s)}\right) *\left(1+\frac{1}{s T i S}+\frac{s T D}{s T F+1}\right)\right] * \frac{100 \% * T_{n}}{(2.29)}$
with:

- $\mathrm{T}_{\text {ref }}=$ torque reference
- $\mathrm{KpS}=$ proportional gain [KpS (24.03)]
- $\mathrm{N}_{\text {ref }}=$ speed reference
- $\quad N_{\text {act }}=$ speed actual

TiS = Integration time [TiS (24.09)]

Signal and parameter list

Group 25: Torque reference

25.01 TorqRefA (torque reference A)

External torque reference in percent of MotNomTorque (4.23). TorqRefA (25.01) can be scaled by LoadShare (25.03).

Note:

Signal / Parameter name	5
Group 26: Torque reference handling	

26.01 TorqSel (torque selector)

Torque reference selector:
$0=$ Zero \quad zero control, torque reference $=0$
1 = Speed speed control, default
2 = Torque torque control
3 = Minimum minimum control: min [TorqRef1 (2.08), TorqRef2 (2.09)]
4 = Maximum maximum control: max [TorqRef1 (2.08), TorqRef2 (2.09)]
5 = Add
$6=$ Limitation
add control: TorqRef1 (2.08) +TorqRef2 (2.09), used for window control
limitation control: TorqRef1 (2.08) limits TorqRef2 (2.09). If TorqRef1 (2.08) $=50 \%$, then TorqRef2 (2.09) is limited to $\pm 50 \%$.
The output of the torque reference selector is TorqRef3 (2.10). The currently used control mode is displayed in CtrIMode (1.25). If the drive is in torque control, AuxStatWord (8.02) bit 10 is set.

Note:

TorqSel (26.01) is only valid, if TorqMuxMode (26.04) = TorqSel2601.
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
26.02 LoadComp (load compensation)

Load compensation - in percent of MotNomTorque (4.23) -added to TorqRef3 (2.10). The sum of TorqRef3 (2.10) and the LoadComp (26.02) results in TorqRef4 (2.11).

Note:

Since this torque offset is added, it must be set to zero prior to stopping the drive.

26.04 TorqMuxMode (torque multiplexer mode)

TorqMuxMode (26.04) selects a pair of operation modes. The change between operation modes is done by means of TorqMux (26.05). Torque reference multiplexer:

30.01 StalITime (stall time)

The allowed for the drive to undershoot Stallspeed (30.02) protection leads to F531 MotorStalled [FaultWord2 (9.02) bit 14].
The stall protection is inactive, if StallTime (30.01) is set to zero

30.02 StallSpeed (stall speed)

Actual speed limit used for stall protection
Internally limited from: 0 rpm to (2.29) rpm
30.03 StallTorq (stall torque)

Actual torque limit - in percent of MotNomTorque (4.23) - used for stall protection.
nt. Scaling: $100=1 \% \quad$ Type: \quad Volatile N
30.08 ArmOvrVoltLev (armature overvoltage level)

The drive trips with F503 ArmOverVolt [FaultWord1 (9.01) bit 2] if ArmOvrVoltLev (30.08) - in percent of M1NomVolt (99.02) - is exceeded. It is recommended to set ArmOvrVoltLev (30.08) at least 20% higher than M1NomVolt (99.02).
Example:
With M1NomVolt (99.02) $=525 \mathrm{~V}$ and ArmOvrVoltLev (30.08) $=120 \%$ the drive trips with armature voltages >
The overvoltage supervision is inactive, if ArmOvrVoltLev (30.08) is set to 328% or higher.

30.09 ArmOvrCurLev (armature overcurrent level)

The drive trips with F502 ArmOverCur [FaultWord1 (9.01) bit 1] if ArmOvrCurLev (30.09) - in percent of M1NomCur (99.03) - is exceeded. It is recommended to set ArmOvrCurLev (30.09) at least 25% higher than Example:
With M1NomCur (99.03) $=850 \mathrm{~A}$ and ArmOvrCurLev (30.09) $=250 \%$ the drive trips with armature currents > 2125 A.
Int. Scaling: $10==1 \%$ Type: । Volatile: N

Signal / Parameter name		
30.10-30.11 Unused		
30.12 M1FIdMinTrip (minimum field trip) The drive trips with F541 M1FexLowCur [FaultWord3 (9.03) bit 8] if M1FldMinTrip (30.12) - in percent of M1NomFldCur (99.11) - is still undershot when FldMinTripDly (45.18) is elapsed. Note: M1FldMinTrip (30.12) is not valid during field heating. In this case, the trip level is automatically set to 50% of M1FIdHeatRef (44.04). The drive trips with F541 M1FexLowCur [FaultWord3 (9.03) bit 8] if 50 \% of M1FldHeatRef (44.04) is still undershot when FldMinTripDly (45.18) is elapsed. Int. Scaling: $100==1 \%$ Type: I Volatile: N	응	
30.13 M1FldOvrCurLev (field overcurrent level) The drive trips with F515 M1FexOverCur [FaultWord1 (9.01) bit 14] if M1FldOvrCurLev (30.13) - in percent of M1NomFldCur (99.11) - is exceeded. It is recommended to set M1FldOvrCurtLev (30.13) at least 25 \% higher than M1NomFldCur (99.11). The field overcurrent fault is inactive, if M1FldOvrCurLev (30.13) is set to 135%. Int. Scaling: $100=1 \%$ Type: । Volatile: N	- $\stackrel{\sim}{\sim}$ N	
30.14 SpeedFbMonLev (speed feedback monitor level) The drive reacts according to SpeedFbFItSel (30.17) or trips with F553 TachPolarity [FaultWord4 (9.04) bit 4] if the measured speed feedback [SpeedActEnc (1.03) or SpeedActTach (1.05)] does not exceed SpeedFbMonLev (30.14) while the measured EMF exceeds EMF FbMonLev (30.15). Internally limited from: 0rpm to $(2.29) * \frac{32767}{20000}$ rpm Example: With SpeedFbMonLev (30.14) $=15 \mathrm{rpm}$ and EMF FbMonLev (30.15) $=50 \mathrm{~V}$ the drive trips when the EMF is > 50 V while the speed feedback is $\leq 15 \mathrm{rpm}$. Int. Scaling: (2.29) Type: I Volatile: N	-	
30.15 EMF FbMonLev (EMF feedback monitor level) The speed measurement monitoring function is activated, when the measured EMF exceeds EMF FbMonLev (30.15). See also SpeedFbMonLev (30.14). Int. Scaling: $1==1 \mathrm{~V}$ Type: I Volatile: N	-	
30.16 M1OvrSpeed (overspeed) The drive trips with F532 MotOverSpeed [FaultWord2 (9.02) bit 15] if M1OvrSpeed (30.16) is exceeded. It is recommended to set M1OvrSpeed (30.16) at least 20% higher than the maximum motor speed. Internally limited from: $0 r p m$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ The overspeed fault is inactive, if M1OvrSpeed (30.16) is set to zero. Int. Scaling: (2.29) Type: I Volatile: N	-	

Signal and parameter list

30.22 UNetMin1 (mains voltage minimum 1)

First (upper) limit for mains undervoltage monitoring in percent of NomMainsVolt (99.10). If the mains voltage undershoots UNetMin1 (30.22) following actions take place:

- the firing angle is set to ArmAlphaMax (20.14),
- single firing pulses are applied in order to extinguish the current as fast as possible,
- the controllers are frozen,
- the speed ramp output is updated from the measured speed and
- A111 MainsLowVolt [AlarmWord1 (9.06) bit 10] is set as long as the mains voltage recovers before PowrDownTime (30.24) is elapsed, otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] is generated.

Note:

UNetMin2 (30.23) is not monitored, unless the mains voltage drops below UNetMin1 (30.22) first. Thus for a proper function of the mains undervoltage monitoring UNetMin1 (30.22) has to be larger than UNetMin2 (30.23).

Int. Scaling: $100==1 \%$ Type: I Volatile: N
30.23 UNetMin2 (mains voltage minimum 2)

Second (lower) limit for mains undervoltage monitoring in percent of NomMainsVolt (99.10). If the mains voltage undershoots UnetMin2 (30.23) following actions take place:

- if PwrLossTrip (30.21) = Immediately:
- the drive trips immediately with F512 MainsLowVolt [FaultWord1 (9.01) bit 11]
- if PwrLossTrip (30.21) = Delayed:
- field acknowledge signals are ignored,
- the firing angle is set to ArmAlphaMax (20.14),
- single firing pulses are applied in order to extinguish the current as fast as possible,
- the controllers are frozen
- the speed ramp output is updated from the measured speed and
- A111 MainsLowVolt [AlarmWord1 (9.06) bit 10] is set as long as the mains voltage recovers before PowrDownTime (30.24) is elapsed, otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] is generated.

Note:

UNetMin2 (30.23) is not monitored, unless the mains voltage drops below UNetMin1 (30.22) first. Thus for a proper function of the mains undervoltage monitoring UNetMin1 (30.22) has to be larger than UNetMin2 (30.23).

Int. Scaling: $100=1 \%$ Type: I Volatile: N
30.24 PowrDownTime (power down time)

The mains voltage must recover (over both limits) within PowrDownTime (30.24). Otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] will be generated.
Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N
30.25-30.26 Unused

Overview local and communication loss:				
Device	Loss control	Time out	Related fault	Related alarm
DCS Control Panel	LocalLossCtrl (30.27)	fixed to 5 s	F546 LocalCmdLoss	A130 LocalCmdLoss
DWL				
R-type fieldbus	ComLossCtrl (30.28)	FB TimeOut (30.35)	F528 FieldBusCom	A128 FieldBusCom
SDCS-COM-8			F543 COM8Com	A113 COM8Com

Signal／Parameter name		
30．33－30．34 Unused		
30．35 FB TimeOut（fieldbus time out） Time delay before a communication break with a fieldbus is declared．Depending on the setting of ComLossCtrl（30．28）either F528 FieldBusCom［FaultWord2（9．02）bit 11］or A128 FieldBusCom ［AlarmWord2（9．07）bit 11］is set． The communication fault and alarm are inactive，if FB TimeOut（30．35）is set to 0 ms ． Int．Scaling： $1==1 \mathrm{~ms}$ Type：I Volatile： N	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \\ \hline \end{array}$	$\stackrel{\sim}{E}$
30．36 SpeedFbFItMode（speed feedback fault mode） SpeedFbFItMode（30．36）determines the reaction to a fault of trip level 3： $0=$ CoastStop \quad The firing pulses are immediately set to 150 degrees to decrease the armature current When the armature current is zero the firing pulses are blocked，the contactors are opened，field exciter and fans are stopped． 1 ＝DynBraking dynamic braking Note： SpeedFbFItMode（30．36）does not apply to communication faults． Int．Scaling： $1==1$ Type：C Volatile： N		
Group 31：Motor temperature		

31．01 M1ModelTime（model time constant）

Thermal time constant for motors with fan／forced cooling．The time within the temperature rises to 63% of its nominal value．
The motor thermal model is blocked，if M1ModelTime（31．01）is set to zero．
The value of Mot1TempCalc（1．20）is saved at power down of the drives electronics．Energizing the drives electronics the very first time the motor＇s ambient temperature is set to $30^{\circ} \mathrm{C}$ ．

WARNING！The model does not protect the motor if it is not properly cooled e．g．due to dust and dirt． Int．Scaling： $10==1 \mathrm{~s} \quad$ Type： $\mathrm{I} \quad$ Volatile： N
31．02 M1ModeITime2（model time 2 constant）
Thermal time constant for motors with fan／forced cooling if motor fan is switched off．

Attention：
For motors without fan set M1ModelTime（31．01）＝M1ModelTime2（31．02）．

nt．Scaling：	$10=1$ \％	Type：	Volatile：	N	¢			

31．03 M1AlarmLimLoad（alarm limit load）

The drive sets A107 M1OverLoad［AlarmWord1（9．06）bit 6］if M1AlarmLimLoad（31．03）－in percent of M1NomCur（99．03）－is exceeded．Output value is Mot1TempCalc（1．20）．
Int．Scaling： $10=1 \% \quad$ Type： $1 \quad$ Volatile：
31．04 M1FaultLimLoad（fault limit load）
The drive trips with F507 M1OverLoad［FaultWord1（9．01）bit 6］if M1FaultLimLoad（31．04）－in percent of M1NomCur（99．03）－is exceeded．Output value is Mot1TempCalc（1．20）．
Int．Scaling： $10=1 \%$ Type：I Volatile：N

1
Nのパ

Signal / Parameter name			
31.05 M1TempSel (temperature selector) M1TempSel (31.05) selects the measured temperature input for the connected motor. The result is displayed in Mot1TemopMeas (1.22). Only one single PTC can be connected. 0 = NotUsed motor temperature measurement is blocked, default $1=1$ PTC AI2/Con one PTC connected to AI2 on SDCS-CON-F For more information, see section Motor protection. Int. Scaling: $1==1 \quad$ Type: C Volatile: N			
31.06 M1AlarmLimTemp (alarm limit temperature) The drive sets A106 M1OverTemp [AlarmWord1 (9.06) bit 5] if M1AlarmLimTemp (31.06) is exceeded. Output value is Mot1TempMeas (1.22). Note: The unit depends on M1TempSel (31.05). Int. Scaling: $1==1 \Omega / 1$ Type: SI Volatile: N	\bigcirc		
31.07 M1FaultLimTemp (fault limit temperature) The drive trips with F506 M1OverTemp [FaultWord1 (9.01) bit 5] if M1FaultLimTemp (31.07) is exceeded. Output value is Mot1TempMeas (1.22). Note: The unit depends on M1TempSel (31.05). Int. Scaling: $1==1 \Omega / 1$ Type: SI Volatile: N	\%		
31.08 M1KlixonSel (klixon selector) The drive trips with F506 M1OverTemp [FaultWord1 (9.01) bit 5] if a digital input selected and the klixon is open: $0=$ NotUsed default 1 = DI1 $0=$ fault, $1=$ no fault 2 = DI2 $\quad 0=$ fault, $1=$ no fault 3 = DI3 $\quad 0=$ fault, $1=$ no fault $4=$ DI4 $\quad 0=$ fault, $1=$ no fault $5=$ DI5 $\quad 0=$ fault, $1=$ no fault 6 = DI6 $\quad 0=$ fault, $1=$ no fault $7=$ DI7 $\quad 0=$ fault, $1=$ no fault $8=$ DI8 $\quad 0=$ fault, $1=$ no fault $9=$ DI9 $\quad 0=$ fault, $1=$ no fault. Only available with digital extension board $10=$ DI10 $\quad 0=$ fault, $1=$ no fault. Only available with digital extension board $11=$ DI11 $\quad 0=$ fault, $1=$ no fault. Only available with digital extension board Note: It is possible to connect several klixons in series. Int. Scaling: $1==1$ Type: C Volatile: N			
31.10 M1LoadCurMax (maximum overload current $I^{2} T$-function) Maximum overload current of the connected motor in \% of M1NomCur (99.03). The overload current is independent of its sign and applies to both current directions. Thus an activated $I^{2} \mathrm{~T}$-function limits M1CurLimBrdg1 (20.12) and M1CurLimBrdg2 (20.13). The $I^{2} \mathrm{~T}$-function is inactive, if M1LoadCurMax (31.10) is set to values $\leq 100 \%$. In case the $I^{2} \mathrm{~T}$-function is reducing the armature current A108 MotCurReduce [AlarmWord1 (9.06) bit 7] is set. Notes: - The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). Int. Scaling: $100=1 \%$ Type: I Volatile: N			
31.11 M1OvrLoadTime (overload time $\mathrm{I}^{2} \mathrm{~T}$-function) Longest permissible time for the maximum overload current defined in M1LoadCurMax (31.10). The $I^{2} \mathrm{~T}$-protection is inactive, if M1OvrLoadTime (31.11) is set to zero. In case the $\mathrm{I}^{2} \mathrm{~T}$-protection is reducing the armature current A108 MotCurReduce [AlarmWord1 (9.06) bit 7] is set. Int. Scaling: $1==1 \mathrm{~s} \quad$ Type: I Volatile: N			
31.12 M1RecoveryTime (recovery time I ${ }^{2} \mathrm{~T}$-function) Recovery time during which a reduced current must flow. The $I^{2} \mathrm{~T}$-protection is inactive, if M1RecoveryTime (31.12) is set to zero. In case the $I^{2} \mathrm{~T}$-protection is reducing the armature current A108 MotCurReduce [AlarmWord1 (9.06) bit 7] is set. Int. Scaling: $1==1 \mathrm{~s} \quad$ Type: I Volatile: N			

Signal / Parameter name	
Group 34: DCS Control Panel display	

Signal and parameter visualization on the DCS Control Panel:

Setting a display parameter to 0 results in no signal or parameter displayed.
Setting a display parameter from 101 to 9999 displays the belonging signal or parameter. If a signal or parameter does not exist, the display shows "n.a.".
34.01 DispParam1Sel (select signal / parameter to be displayed in the DCS Control Panel row 1) Index pointer to the source of the DCS Control Panel first display row [e.g. 101 equals MotSpeedFilt (1.01)]. Int. Scaling: $\quad 1==1 \quad$ Type: I Volatile: $\mathrm{N} \quad 0$.
34.02-34.07 Unused
34.08 DispParam2Sel (select signal / parameter to be displayed in the DCS Control Panel row 2) Index pointer to the source of the DCS Control Panel second display row [e.g. 114 equals ArmVoltAct (1.14)]. Int. Scaling: $1==1$
34.09-34.14 Unused
34.15 DispParam3Sel (select signal / parameter to be displayed in the DCS Control Panel I row 3) Index pointer to the source of the DCS Control Panel third display row [e.g. 116 equals ConvCurAct (1.16)]. Int. Scaling: $1==1$

Type: I
Volatile:
N

Group 40: PID controller

Overview of the PID controller:
Reference input 1

40.01 KpPID (p-part PID controller)

Proportional gain of the PID controller.
Example:
The controller generates 15% output with $\operatorname{KpPID}(40.01)=3$, if the input is 5%.
Int. Scaling: $100=1 \quad$ Type: $1 \quad$ Volatile: N

Signal / Parameter name			
40.02 TiPID (i-part PID controller) Integral time of the PID controller. TiPID (40.02) defines the time within the integral part of the controller achieves the same value as the proportional part. Example: The controller generates 15% output with $K p P I D(40.01)=3$, if the input is 5%. On that condition and with TiPID (40.02) $=300 \mathrm{~ms}$ follows: the controller generates 30% output, if the input is constant, after 300 ms are elapsed (15% from proportional part and 15% from integral part). Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N			
40.03 TdPID (d-part PID controller) PID controller derivation time. TdPID (40.03) defines the time within the PID controller derives the error value. The PID controller works as PI controller, if TdPID (40.03) is set to zero. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N			
40.04 TdFiltPID (filter time for d-part PID controller) Derivation filter time. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile:		은	
40.05 Unused			
40.06 PID Act1 (PID controller actual input value 1 index) Index pointer to the source of the PID controller actual input value 1 . The format is -xxyy, with: $-=$ negate actual input value 1, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index [e.g. 101 equals MotSpeedFilt (1.01)]. Int. Scaling: $1==1 \quad$ Type: SI Volatile: N		0	
40.07 PID Act2 (PID controller actual input value 2 index) Index pointer to the source of the PID controller actual input value 2. The format is -xxyy, with: - = negate actual input value 2, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index [e.g. 101 equals MotSpeedFilt (1.01)]. Int. Scaling: $1==1 \quad$ Type: SI Volatile: N		0	
40.08 PID Ref1Min (PID controller minimum limit reference input value 1) Minimum limit of the PID controller reference input value 1 in percent of the source of PID Ref1 (40.13). Int. Scaling: $100==1 \%$ Type: SI Volatile: N	ल	\bigcirc	
40.09 PID Ref1Max (PID controller maximum limit reference input value 1) Maximum limit of the PID controller reference input value 1 in percent of the source of PID Ref1 (40.13). Int. Scaling: $100==1 \%$ Type: SI Volatile: N		앙	
40.10 PID Ref2Min (PID controller minimum limit reference input value 2) Minimum limit of the PID controller reference input value 2 in percent of the source of PID Ref2 (40.14). Int. Scaling: $100==1 \%$ Type: SI Volatile: $\quad \mathrm{N}$		\bigcirc	
40.11 PID Ref2Max (PID controller maximum limit reference input value 2) Maximum limit of the PID controller reference input value 2 in percent of the source of PID Ref2 (40.14). Int. Scaling: $100==1 \%$ Type: SI Volatile: N		8	

Signal / Parameter name		
```43.02 CurSel (current reference selector) CurSel (43.02) selector: \(0=\) CurRef311 CurRef (3.11) calculated from torque reference as armature current reference, default 1 = CurRefExt CurRefExt (43.03) as armature current reference 2 = Al1 analog input Al1 as armature current reference 3 = Al2 analog input Al2 as armature current reference analog input Al2 as armature current reference 4 = Al3 analog input Al3 as armature current reference 5 = Al4 \(6=\) Al5 \(\quad\) analog input Al4 as armature current reference 7 = AI6 analog input Al5 as armature current reference 8 = CurZero \(\quad\) forces single firing pulses and sets CurRefUsed (3.12) to zero Int. Scaling: \(1==1\) Type: C Volatile: N```		
43.03 CurRefExt (external current reference)   External current reference in percent of M1NomCur (99.03).   Note:   CurRefExt (43.03) is only valid, if CurSel (43.02) = CurRefExt.   Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	へ్ల్ల్ల్లు	
43.04 CurRefSlope (current reference slope)   CurRefSlope (43.04) in percent of M1NomCur (99.03) per 1 ms . The di/dt limitation is located at the input of the current controller.   Int. Scaling: $100==1 \% / \mathrm{ms} \quad$ Type: I Volatile: N	$\bigcirc$	
43.05 Unused		
43.06 M1KpArmCur (p-part armature current controller)   Proportional gain of the current controller.   Example:   The controller generates $15 \%$ of motor nominal current [M1NomCur (99.03)] with M1KpArmCur (43.06) $=3$, if the current error is $5 \%$ of M1NomCur (99.03).   Int. Scaling: $100=1 \quad$ Type: I Volatile: N	0 -	0
43.07 M1TiArmCur (i-part armature current controller)   Integral time of the current controller. M1TiArmCur (43.07) defines the time within the integral part of the controller achieves the same value as the proportional part.   Example:   The controller generates $15 \%$ of motor nominal current [M1NomCur (99.03)] with M1KpArmCur (43.06) $=3$, if the current error is $5 \%$ of M1NomCur (99.03). On that condition and with M1TiArmCur (43.07) $=50 \mathrm{~ms}$ follows:   the controller generates $30 \%$ of motor nominal current, if the current error is constant, after 50 ms are elapsed ( $15 \%$ from proportional part and $15 \%$ from integral part).   Setting M1TiArmCur (43.07) to 0 ms disables the integral part of the current controller and resets its integrator.   Int. Scaling: $1==1 \mathrm{~ms}$ Type: । Volatile: N		
43.08 M1DiscontCurLim (discontinuous current limit)   Threshold continuous / discontinuous current in percent of M1NomCur (99.03). The actual continuous / discontinuous current state can be read from CurCtrlStat1 (6.03) bit 12.   Int. Scaling: $100==1 \%$ Type: I Volatile: N	- ${ }_{0}$	$\bigcirc$
43.09 M1ArmL (armature inductance)   Inductance of the armature circuit in mH . Used for the EMF compensation: $E M F=U_{A}-R_{A} * I_{A}-L_{A} * \frac{d I_{A}}{d t}$   Attention:   Do not change the default values of M1ArmL (43.09) and M1ArmR (43.10)! Changing them will falsify the results of the autotuning.   Int. Scaling: $100==1 \mathrm{mH}$ Type: $\mathrm{I} \quad$ Volatile: N		

## Signal / Parameter name

## 

43.10 M1ArmR (armature resistance)

Resistance of the armature circuit in $\mathrm{m} \Omega$. Used for the EMF compensation:
$E M F=U_{A}-R_{A} * I_{A}-L_{A} * \frac{d I_{A}}{d t}$

## Attention:

Do not change the default values of M1ArmL (43.09) and M1ArmR (43.10)! Changing them will falsify the results of the autotuning.
Int. Scaling: $1==1 \mathrm{~m} \Omega \quad$ Type: $\quad$ Volatile: N
43.11-43.13 Unused
43.14 RevDly (reversal delay)

RevDly (43.14) defines the delay time in ms for the bridge reversal after zero current has been detected - see CurCtrlStat1 (6.03) bit 13.


The reversal delay starts when zero current has been detected - see CurCtrlStat1 (6.03) bit 13 - after a command to change current direction - see CurRefUsed (3.12) - has been given. After a command to change the current direction the opposite current has to be reached before ZeroCurTimeOut (97.19) has been elapsed otherwise the drive trips with F557 ReversalTime [FaultWord4 (9.04) bit 8].

## Note:

ZeroCurTimeOut (97.19) must be longer than RevDly (43.14)
Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N

## Group 44: Field excitation

### 44.01 FIdCtrIMode (field control mode)

Field control mode selection:

$0=$ Fix	constant field (no field weakening), EMF controller blocked, field reversal blocked, optitorque   blocked, default
$1=$ EMF	field weakening active, EMF controller released, field reversal blocked, optitorque blocked

## Note:

It is not possible to go into field weakening range when M1SpeeFbSel (50.03) = EMF.
Int. Scaling: $1==1$ Type: C Volatile: N
44.02 M1KpFex (p-part field current controller)

Proportional gain of the field current controller.
Example:
The controller generates $15 \%$ of motor nominal field current [M1NomFldCur (99.11)] with M1KpFex (44.02) = 3, if the field current error is $5 \%$ of M1NomFldCur (99.11).
Int. Scaling: $100=1 \quad$ Type: $1 \quad$ Volatile: N

Signal / Parameter name	
44.03 M1TiFex (i-part field current controller)   Integral time of the field current controller. M1TiFex (44.03) defines the time within the integral part of the controller achieves the same value as the proportional part.   Example:   The controller generates $15 \%$ of motor nominal field current [M1NomFldCur (99.11)] with M1KpFex (44.02) =   3 , if the field current error is $5 \%$ of M1NomFldCur (99.11). On that condition and with M1TiFex (44.03) $=200$ ms follows:   the controller generates $30 \%$ of motor nominal field current, if the current error is constant, after 200 ms are elapsed ( $15 \%$ from proportional part and $15 \%$ from integral part).   Setting M1TiFex (44.03) to 0 ms disables the integral part of the field current controller and resets its integrator.   Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N	
44.04 M1FIdHeatRef (field heating reference)   Field current reference - in percent of M1NomFieldCur (99.11) - for field heating. Field heating is released according to FldHeatSel (21.18).   Int. Scaling: $1==1 \%$ Type:	웅웅
44.05-44.06 Unused	
44.07 EMF CtrIPosLim (positive limit EMF controller) Positive limit for EMF controller in percent of nominal flux. Int. Scaling: $1==1 \% \quad$ Type: I Volatile:	옹
44.08 EMF CtrINegLim (negative limit EMF controller) Negative limit for EMF controller in percent of nominal flux Int. Scaling: $1==1 \% \quad$ Type: I Volatile:	
44.09 KpEMF (p-part EMF controller)   Proportional gain of the EMF controller.   Example:   The controller generates 15 \% of motor nominal EMF with $\operatorname{KpEMF}$ (44.09) $=3$, if the EMF error is $5 \%$ of M1NomVolt (99.02).   Int. Scaling: $100=1 \quad$ Type: I Volatile: N	mo
44.10 TiEMF (i-part EMF controller)   Integral time of the EMF controller. TiEMF (44.10) defines the time within the integral part of the controller achieves the same value as the proportional part.   Example:   The controller generates $15 \%$ of motor nominal EMF with $\operatorname{KpEMF}(44.09)=3$, if the EMF error is $5 \%$ of M1NomVolt (99.02). On that condition and with TiEMF (44.10) $=20 \mathrm{~ms}$ follows:   - the controller generates $30 \%$ of motor nominal EMF, if the EMF error is constant, after 20 ms are elapsed   ( $15 \%$ from proportional part and $15 \%$ from integral part).   Setting TiEMF (44.10) to 0 ms disables the integral part of the EMF controller and resets its integrator.   Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N	
44.11 Unused	
44.12 FIdCurFlux 40 (field current at $40 \%$ flux)   Field current at $40 \%$ flux in percent of $M 1$ NomFldCur (99.11).   Int. Scaling: $1==1 \% \quad$ Type: $1 \quad$ Volatile:	- $\square^{\circ}$
44.13 FldCurFlux70 (field current at 70\% flux)   Field current at 70 \% flux in percent of M1NomFldCur (99.11).   Int. Scaling: $1==1 \% \quad$ Type: $\quad$ Volatile: N	$\bigcirc 0^{\circ}$
44.14 FldCurFlux90 (field current at 90\% flux)   Field current at $90 \%$ flux in percent of M1NomFldCur (99.11).   Int. Scaling: $1==1 \%$ Type: I Volatile: N	-8 $0^{\circ}$
Group 45: Field converter settings	
45.01 Unused	

## Signal / Parameter name

## 

45.02 M1PosLimCtrl (positive voltage limit for field exciter)

Positive voltage limit for the field exciter in percent of the maximum field exciter output voltage.
Example:
With a 3-phase supply voltage of $400 \mathrm{~V}_{\mathrm{AC}}$ the field current controller can generate a maximum output voltage of $521 \mathrm{~V}_{\mathrm{DC}}$. In case the rated field supply voltage is $200 \mathrm{~V}_{\mathrm{DC}}$, then it is possible to limit the controller's output voltage to $46 \%$. That means the firing angle of the field current controller is limited in such a way that the average output voltage is limited to a maximum of 230 V DC . nt. Scaling: $100=1 \% \quad$ Type: I Volatile: N 45.03-45.17 Unused
45.18 FIdMinTripDly (delay field current minimum trip)

FldMinTripDly (45.18) delays F541 M1FexLowCur [FaultWord3 (9.03) bit 8]. If the field current recovers before the delay is elapsed F541 will be disregarded:

```
- M1FldMinTrip (30.12)
Int. Scaling: 1==1 ms Type: I Volatile: N
```


## Group 50: Speed measurement

### 50.01 M1SpeedScale (speed scaling)

Speed scaling in rpm. M1SpeedScale (50.01) defines the speed - in rpm - that corresponds to 20,000 internal speed units. The speed scaling is released when M1SpeedScale (50.01) $\geq 10$ :


- 20,000 speed units $==$ M1SpeedScale (50.01), in case M1SpeedScale (50.01) $\geq 10$
- 20,000 speed units $==$ maximum absolute value of M1SpeedMin (20.01) and M1SpeedMax (20.02), in case M1SpeedScale (50.01) < 10
Mathematically speaking:
If (50.01) $\geq 10$ then $20,000==(50.01)$ in rpm
If $(50.01)<10$ then $20,000==\operatorname{Max}[|(20.01)|,|(20.02)|]$ in rpm
The actual used speed scaling is visible in SpeedScale Act (2.29).


## Notes:

- M1SpeedScale (50.01) has to be set in case the speed is read or written by means of an overriding control via fieldbus.
- M1SpeedScale (50.01) is must be set in the range of:
0.625 to 5 times of M1BaseSpeed (99.04), because the maximum amount of speed units is 32,000 .

If the scaling is out of range A124 SpeedScale [AlarmWord2 (9.07) bit 7] is generated.

## Commissioning hint:

- Set M1SpeedScale (50.01) to maximum speed
- Set M1BaseSpeed (99.04) to base speed
- Set M1SpeedMax (20.02) / M1SpeedMin (20.01) to $\pm$ maximum speed

Int. Scaling: $10==1 \mathrm{rpm}$ Type: I Volatile: N
50.02 Unused
 Int. Scaling: $1==1 \mathrm{ppr}$ Type: I Volatile: N
50.05 MaxEncoderTime (maximum encoder time)

When an encoder is used as speed feedback device the actual speed is measured by counting the amount of pulses per cycle time. The cycle time for the measurement is synchronized with the mains (every 3.3 ms or 2.77 ms ).

In case very small speeds have to be measured - that means there is less than one pulse per cycle time - it is possible to increase the measuring time by means of MaxEncoderTime (50.05). The speed is set to zero after MaxEncoderTime (50.05) is elapsed without a measured pulse.


Notes:

- Formula to calculate the maximum speed using an encoder:
$n_{\max }[r p m]=\frac{300 \mathrm{kHz} * 60 \mathrm{~s}}{p p r}$
with: $\quad \mathrm{ppr}=$ pulses per revolution - see M1EncPulseNo (50.04)
- Formula to calculate the minimum speed resolution using an encoder:
$n_{\text {min }}[r p m]=\frac{60 s}{k^{*} p p r * t_{\text {cycle }}}$
with: $\quad k=4$ (speed evaluation factor)
ppr = pulses per revolution - see M1EncPulseNo (50.04)
$\mathrm{t}_{\text {cycle }}=$ cycle time of the speed controller, either 3.3 ms or 2.77 ms
Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N

Signal / Parameter name			
50.06 SpeedFiltTime (actual speed filter time)   Speed actual filter time for MotSpeed (1.04). There are three different filters for actual speed and speed error $(\Delta n)$ :   SpeedFiltTime (50.06) is filtering the actual speed and should be used for filter times smaller than 30 ms . SpeedErrFilt (23.06) and SpeedErrFilt2 (23.11) are filtering the speed error ( $\Delta \mathrm{n}$ ) and should be used for filter times greater than 30 ms . It is recommended to set SpeedErrFilt (23.06) = SpeedErrFilt2 (23.11).   Int. Scaling: $1==1 \mathrm{~ms}$ Type: ।   Volatile:   N			$\varepsilon$
50.07-50.09 Unused			
50.10 SpeedLev (speed level)   When MotSpeed (1.04) reaches SpeedLev (50.10), the bit AboveLimit [MainStatWord (8.01) bit 10] is set. Internally limited from: $-(2.29) * \frac{32767}{20000} \mathrm{rpm}$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$   Note:   With SpeedLev (50.10) it is possible to automatically switch between the two p-and i-parts of the speed controller, see Par2Select (24.29) = SpeedLevel or SpeedError.   Int. Scaling: (2.29) Type: I Volatile: N			
50.11 DynBrakeDly (dynamic braking delay)   In case of dynamic braking with EMF feedback [M1SpeedFbSel (50.03) = EMF] or a speed feedback fault there is no valid information about the motor speed and thus no zero speed information. To prevent an interlocking of the drive after dynamic braking the speed is assumed zero after DynBrakeDly (50.11) is elapsed: $-1 \mathrm{~s}=$   $0 \mathbf{s}=\quad$ no zero speed signal for dynamic braking is generated   1 s to $3000 \mathrm{~s}=\quad$ zero speed signal for dynamic braking is generated after the programmed time is elapsed   Int. Scaling: $1==1 \mathrm{~s} \quad$ Type: $\mathrm{I} \quad$ Volatile: N			

Analog tacho inputs


### 50.12 M1TachoAdjust (tacho adjust)

Fine tuning of analog tacho. The value equals the actual speed measured by means of a hand held tacho:
M1TachoAdjust (50.12) $=$ speed actual HandHeldTacho
Internally limited to: $\pm(2.29) * \frac{32767}{20000} r p m$

## Note:

Changes of M1TachoAdjust (50.12) are only valid during tacho fine-tuning [ServiceMode (99.06) =
TachFineTune]. During tacho fine-tuning M1SpeedFbSel (50.03) is automatically forced to EMF.

## Attention:

The value of M1TachoAdjust (50.12) has to be the speed measured by the hand held tacho and not the delta between speed reference and measured speed.
Int. Scaling: (2.29) Type: I Volatile: Y

### 50.13 M1TachoVolt1000 ( tacho voltage at 1000 rpm)

M1TachoVolt1000 (50.13) is used to adjust the voltage the analog tacho is generating at a speed of 1000 rpm :

- M1TachoVolt1000 (50.13) $\geq 1 \mathrm{~V}$, the setting is used to calculate the tacho gain
- M1TachoVolt1000 (50.13) $=0 \mathrm{~V}$, the tacho gain is measured by means of the speed feedback assistant
- M1TachoVolt1000 (50.13) = -1 V, the tacho gain was successfully measured and set by means of the speed feedback assistant
Int. Scaling: $10==1 \mathrm{~V}$ Type: I Volatile: N
$\mathrm{N} \quad 0$ స̀ $\mathrm{O}>$

Signal / Parameter name	
Group 51: Fieldbus	

This parameter group defines the communication parameters for fieldbus adapters. The parameter names and the number of the used parameters depend on the selected fieldbus adapter (see fieldbus adapter manual).
Note:
If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.


Group 52: Modbus
This parameter group defines the communication parameters for the Modbus adapter RMBA-xx (see also Modbus adapter manual).
Note:
If a Modbus parameter is changed its new value takes effect only upon the next power up of the Modbus adapter.
52.01 StationNumber (station number)

Defines the address of the station. Two stations with the same station number are not allowed online.
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: $N \quad-\hat{N}_{-}$,
52.02 BaudRate (baud rate)

Defines the transfer rate of the Modbus link:
$0=$ reserved
$1=600 \quad 600$ Baud
$2=1200 \quad 1200$ Baud
$3=2400 \quad 2400$ Baud
$4=4800 \quad 4800$ Baud
$5=9600 \quad 9600$ Baud, default
$6=19200 \quad 19200$ Baud
Int. Scaling: $1==1 \quad$ Type: C Volatile: N

[^4]



The standard ramp will be re-configured for the winder control.
Commissioning hints:
For proper calculation following rules apply:
Maximum motor speed ( $n_{\text {max }}$ ) is reached with minimum diameter ( $D_{\text {min }}$ ) at maximum line speed ( $v_{\text {max }}$ ).
The scaling of line speed and motor speed is needed, because the winder works with relative values (percent).

1. Set LineSpdUnit (61.12) to the desired unit.
2. Set LineSpdScale (61.09) to the maximum line speed. Thus, the maximum line speed corresponds to 20,000 internal line speed units.
3. Set LineSpdPosLim (61.10) to maximum line speed.
4. Calculate the maximum needed motor speed:

$$
n_{\max } \frac{60 s}{\min } * \frac{v_{\max }}{\pi * D_{\min }} * i \underbrace{\begin{array}{l}
\text { maximum needed motor speed } \\
\text { maximum line speed } \\
\text { minimum diameter } \\
\text { gear ratio (motor } / \mathrm{load})
\end{array}}_{\substack{\mathrm{D}_{\min }[\mathrm{m}] \\
\mathrm{D}_{\max }[\mathrm{rpm}] \\
\mathrm{v}_{\max }}}
$$

5. Set M1SpeedScale (50.01) $=\mathrm{n}_{\text {max }}$ even if the motor data allow a wider speed range. Thus, the maximum motor speed corresponds to 20,000 internal speed units.
6. Set M1SpeedMax (20.02) $=\mathrm{n}_{\max }+\max$ WindSpdOffset (61.14) in rpm, even if the motor data allow a wider speed range.
7. Set M1SpeedMin (20.01) $=-\left[\mathrm{n}_{\max }+\right.$ max. WindSpdOffset (61.14) in rpm $]$, even if the motor data allow a wider speed range.
WindSpdOffset (61.14) is only active when WinderMacro (61.01) = IndirectTens or DirectTens.

### 61.09 LineSpdScale (winder set, line speed scaling)

Line speed scaling. LineSpdScale (61.09) defines the line speed that corresponds to 20,000 internal speed
units. The line speed scaling should be set in a way, that 20,000 internal speed units equal $100 \%$ line speed. The line speed unit is defined in LineSpdUnit(61.12):

- LineSpdScale (61.09) $==20,000$ speed units $==100 \%$

Int. Scaling: $10==1(61.12) \quad$ Type: I Volatile: N
61.10 LineSpdPosLim (ramp, maximum line speed limit)

Maximum line speed reference limit at the ramp.
Int. Scaling: $1==1$ (61.12) Type: SI Volatile: N

61.12 LineSpdUnit (winder set, line speed unit)

The line speed unit:

$0=\%$	percent, default
$1=\mathbf{m} / \mathbf{s}$	meters per second
$2=\mathbf{m} / \mathbf{m i n}$	meters per minute

$3=\mathrm{ft} / \mathrm{s} \quad$ meters per minute
$3=\mathrm{ft} / \mathrm{min} \quad$ feet per minute
$4=r p m \quad r p m$

61.13 Unused
61.14 WindSpdOffset (winder control, winder speed offset)

Winder speed offset connected to SpeedCorr (23.04) is used to saturate the speed controller. Active only when WinderMacro (61.01) = IndirectTens or DirectTens. Should be $10 \%$ of SpeedScaleAct (2.29).
Int. Scaling: $1==1 \mathrm{rpm} \quad$ Type: SI Volatile: N
61.15 Unused

Link between WindCtrIWord (61.16), UsedWCW (61.17) and WindStatWord (61.19): (details see appendix)



In most cases, the actual diameter must be calculated from the measured line speed and measured motor speed, because a diameter sensor does not exist:


The diameter calculation is used to calculate the actual diameter from the actual line speed and the actual motor speed. It is possible to force or preset the diameter of the coil. To avoid steps the calculated diameter is passed through a ramp generator. The minimum diameter is used as the lower limit.


## Commissioning hint:

- The diameter calculation works with relative diameters in percent of the maximum allowed diameter, so the physical values must be converted.
DiameterMin (62.05) $=\frac{D_{\min }}{D_{\max }} * 100 \%$
DiameterValue (62.03) $=\frac{D_{\text {act }}}{D_{\max }} * 100 \%$

- DiaRampTime (62.06) is calculated the following way.

DiaRampTime (62.06) $=\frac{D_{\max }^{2 *} \pi}{2 * v * \delta} \begin{array}{lll}v^{2} * & \begin{array}{l}\mathrm{D}_{\text {max }}[\mathrm{m}] \\ \mathrm{v}[\mathrm{m} / \mathrm{s}] \\ \delta[\mathrm{m}]\end{array} & \begin{array}{l}\text { maximum diameter } \\ \text { line speed } \\ \text { web thickness }\end{array}\end{array}$
62.01 DiaLineSpdIn (diameter calculation, line speed input)

Source (signal/parameter) for the line speed input of the diameter calculation. The format is -xxyy, with: - = negate input, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index.
Default setting of 202 equals SpeedRef3 (2.02).
Int. Scaling: $1==1 \quad$ Type: SI Volatile: $N$
62.02 DiaMotorSpdIn (diameter calculation, motor speed input)

Source (signal/parameter) for the motor speed input of the diameter calculation. The format is -xxyy, with: - = negate input, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index.
Default setting of 104 equals MotSpeed (1.04).
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
62.03 DiameterValue (diameter calculation, initial diameter value)

Initial diameter of the coil in percent of the maximum diameter. To be set by means of DiameterSetCmd (62.04).
nt. Scaling: $100=1 \%$ Type: I Volatile: $N$


## Signal and parameter list



The actual acceleration adjust filters e.g. the dv_dt (2.16) output of the ramp with a PT1-filter. The output has to be 100 \% with maximum acceleration using the shortest ramp time. To archive this goal a trimming input is available.


## Commissioning hint:

- AccTrim (62.19) has to be determined with acceleration trials. AccActAdjust (62.21) has to be $100 \%$ with maximum acceleration using the shortest ramp time.
Autotuning is possible with WinderTuning (61.21) = InerMechComp.


### 62.17 AccActIn (actual acceleration adjustment, actual acceleration input)

Source (signal/parameter) for the actual acceleration input of the actual acceleration adjustment. The format is
-xxyy, with: - = negate input, $x x=$ group and $y y=$ index.
Default setting of 216 equals $d v _d t$ (2.16).
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
62.18 AccFiltTime (actual acceleration adjustment, filter time)

Actual acceleration filter time. Can usually be left on default.
Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N
62.19 AccTrim (actual acceleration adjustment, trimming)

Trimming / scaling of the actual acceleration.
Int. Scaling: $100=1 \quad$ Type: SI Volatile: N
62.20 Unused
62.21 AccActAdjust (actual acceleration adjustment, output)

Output of the actual acceleration adjustment. Adjusted actual acceleration in percent of maximum acceleration.
Int. Scaling: $100==1 \%$ Type: SI Volatile: Y
62.22 Unused

## Inertia compensation (acceleration compensation):

During the winding operation, the motor must only generate the torque for the needed tension. For acceleration, an additional torque is necessary. The acceleration torque (inertia compensation) depends on the inertia of the complete winder (motor, gearbox, spool and coil). The inertia of motor, gearbox and spool is constant. The inertia of the coil is a function of the diameter. In case the diameter is small, the inertia is small. With increasing diameter, the inertia increases. That means more acceleration torque (inertia compensation) is needed. The problem in many applications is that the inertia is not available. Thus, it has to be determined by means of acceleration tests.


The inertia compensation calculates the acceleration torque needed to compensate the inertia of the winder mechanics plus the inertia of the coil. To adapt the inertia of the coil its diameter and width is needed.


## Commissioning hint:

- InerMech (62.26) has to be determined by means of acceleration trials with maximum acceleration using the shortest ramp time. Only the spool is on the winder. The result is available in MotTorqFilt (1.07) during the acceleration.
Autotuning is possible with WinderTuning (61.21) = InerMechComp.
InerCoil (62.25) has to be determined by means of acceleration trials with maximum acceleration using the shortest ramp time. The largest coil (maximum diameter and maximum width) has to be on the winder. The result is available in MotTorqFilt (1.07) during the acceleration. Autotuning is possible with WinderTuning (61.21) = InerCoilComp.
Do not forget to subtract the average friction losses from the measured values - see FrictAtOSpd (63.26) to FrictAt100Spd (63.30).
The width calculation works with relative width' in percent of the maximum width, so the physical values must be converted.
InerCoilWidth (62.27) $=\frac{\text { Width }_{\text {act }}}{\text { Width }_{\text {max }}} * 100 \%$
- InerReleaseCmd (62.28) releases InertiaComp (62.30). The output is forced to zero if the switch is open.


### 62.23 InerDiaActIn (inertia compensation, actual diameter input)

Source (signal/parameter) for the actual diameter input of the inertia compensation. The format is xxyy, with: $\mathrm{xx}=$ group and $\mathrm{yy}=$ index.
Default setting of 6208 equals DiameterAct (62.08).
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: $\quad \mathrm{N}$

### 62.24 InerAccActIn (inertia compensation, actual acceleration input)

Source (signal/parameter) for the actual acceleration input of the inertia compensation. The format is -xxyy, with: - = negate input, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index.
Default setting of 6221 equals AccActAdjust (62.21).
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
62.25 InerCoil (inertia compensation, coil inertia)

Acceleration torque for the inertia of the coil in percent of MotNomTorque (4.23). Acceleration trials have to be done with the largest (maximum diameter and maximum width) coil available.
Int. Scaling: $100==1 \%$ Type: I Volatile: N
62.26 InerMech (inertia compensation, mechanics inertia)

Acceleration torque for the inertia of the winder mechanics in percent of MotNomTorque (4.23). Acceleration trials have to be done with an empty spindle or empty spool.
Int. Scaling: $100=1 \%$ Type: I Volatile: N


Signal and parameter list


63.01 TensRefin (tension reference, tension reference input)

Source (signal/parameter) for the tension reference input of the tension reference. The format is xxyy, with: $x x=$ group and $y \mathbf{y}=$ index.
As default, nothing is connected to the input.
Examples:

- Setting of 516 uses AI2 Val (5.16) as tension reference.
- Setting of 1901 uses Data1 (19.01) and could be used for reference via fieldbus
- Setting of 8501 uses Constant1 (85.01) and could be used as constant reference

Int. Scaling: $1==1 \quad$ Type: I Volatile: N
63.02 TaperDiaActIn (tension reference, actual diameter input)

Source (signal/parameter) for the actual diameter input of the tension reference used for taper tension calculation. The format is $x x y y$, with: $x x=$ group and $y \mathbf{y}=$ index.
Default setting of 6208 equals DiameterAct (62.08).
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: $N$
63.03 TensValueln (tension reference, standstill tension value input)

Source (signal/parameter) for the standstill tension reference input of the tension reference. The format is xxyy, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. The standstill tension is usually set when the line speed is zero. As default, nothing is connected to the input.
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: $N$
63.04 TensSetCmd (tension reference, set tension value command)

Source to release the standstill tension reference - see TensValueln (63.03) - or release the tension reference - see TensRefln (63.01):
$0=$ TensionRef constant 0 ; release tension reference
1 = Auto depending on winder logic and winder macro, see WinderMacro (61.01), default
$2=$ StanstilTens constant 1 ; release standstill tension reference
3 = WindCtrIWord according to WindCtrlWord (61.16) bit 10
$4=$ DI1 $\quad 1=$ release standstill tension reference; $0=$ release tension reference
5-23 see WriteToSpdChain (61.02)
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
63.05 TaperDia (tension reference, taper diameter)

Diameter of the coil, in percent of the maximum diameter, from where the tension reduction for tapering begins.
Int. Scaling: $100=1 \%$ Type: I Volatile: N
63.06 TaperTens (tension reference, taper tension)

Diameter dependent tension reduction, in percent of the maximum tension, for tapering. The value of TaperTens (63.06) is reached at the maximum diameter.
Int. Scaling: $100==1 \%$ Type: I Volatile: N
63.07 TensRefMin (tension reference, minimum tension reference)

Minimum tension reference in percent of the maximum tension.
Int. Scaling: $100==1 \%$ Type: I Volatile: N
63.08 TensRampTime (tension reference, ramp time)

Ramp time of for the tension reference from zero percent tension to $100 \%$ tension.
Int. Scaling: $1==1 \quad$ Type: C Volatile: N


## Tension to torque:

For winders it is important that the tension fit to the web. With too low tension, the web does not wind correctly. With too high tension, the web might rip. This is the worst case, because the winder will accelerate, if there is no web break monitoring.
The tension is a force measured in Newton [ N ]. When the tension is multiplied by the radius of the coil, the necessary torque for the selected tension can be calculated. Most torque is needed with maximum diameter at lowest motor speed.

$T=\frac{F^{*} D}{2 * i}$| $\mathrm{T}[\mathrm{Nm}]$ |
| :--- | :--- | :--- |
| $\mathrm{F}[\mathrm{N}]$ |$\quad$| torque |
| :--- |
| $\mathrm{D}[\mathrm{m}]$ |
| i |$\quad$| tension |
| :--- |
| diameter |
| gear ratio (motor / load) |



## Signal / Parameter name

The tension to torque function provides three inputs for tension references and uses them to convert tension into torque depending on the actual diameter.


## Commissioning hint:

For proper calculation following rules apply:

- Maximum torque ( $T_{\max }$ ) is reached with maximum diameter ( $\mathrm{D}_{\max }$ ), means with a diameter of $100 \%$.
- The motor torque - see MotTorqNom (4.23) - must be larger than maximum torque ( $\mathrm{T}_{\text {max }}$ ).
- The torque scaling is needed, because the tension to torque function works with relative values.

$$
\begin{aligned}
& T_{\max }=\frac{F_{\max } * D_{\max }}{2 *_{i}} \\
& \text { TTTScale (63.21) }=\frac{T_{\max }}{T_{\text {Mot }}} * 100 \% \\
& \mathrm{~T}_{\text {max }}[\mathrm{Nm}] \quad \text { maximum needed torque } \\
& \mathrm{T}_{\text {Mot }}[\mathrm{Nm}] \text { nominal motor torque, see MotTorqNom (4.23) } \\
& \mathrm{F}_{\text {max }}[\mathrm{N}] \text { maximum tension } \\
& \mathrm{D}_{\text {max }}[\mathrm{m}] \quad \text { maximum diameter } \\
& \text { i } \\
& \mathrm{T}_{\text {Mot }} \text { must be larger than } \mathrm{T}_{\text {max }} \text { ! }
\end{aligned}
$$

### 63.18 TTT Ref1In (tension to torque, reference 1 input)

Source (signal/parameter) for tension reference input 1 of tension to torque calculation. The format is xxyy, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index.
As default, nothing is connected to the input.
Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: $N$
63.19 TTT Ref2In (tension to torque, reference 2 input)

Source (signal/parameter) for tension reference input 2 of tension to torque calculation. The format is xxyy, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index.
Default setting of 6315 equals TensionRef (63.15).
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
63.20 TTT Ref3In (tension to torque, reference 3 input)

Source (signal/parameter) for tension reference input 3 of tension to torque calculation. The format is xxyy, with: $\mathrm{xx}=$ group and $\mathrm{yy}=$ index.
As default, nothing is connected to the input.
Int. Scaling: $1=1 \quad$ Type: C Volatile: N
63.21 TTT Scale (tension to torque, torque scaling)

Torque scaling.
Int. Scaling: $100==1 \%$ Type: SI Volatile: N

### 63.22 TTT DiaActIn (tension to torque, actual diameter input)

Source (signal/parameter) for the actual diameter input of tension to torque calculation. The format is xxyy, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index.
Default setting of 6208 equals DiameterAct (62.08).
Int. Scaling: $1==1$ Type: I Volatile: N
63.23 Unused
63.24 TensToTorq (tension to torque, torque reference output)

Output of the tension to torque calculation. Torque reference in percent of MotNomTorque (4.23).
Int. Scaling: $100==1 \%$ Type: SI Volatile: Y

### 63.25 Unused

## Friction compensation (loss compensation):

During the winding operation, the motor must only generate the torque for the needed tension. The mechanics of the winder generate losses from friction and torsion. These losses depend on the motor speed and measure them in speed trials. They are non-linear and must be saved in a characteristic curve with supporting points. The friction compensation calculates the torque needed to compensate the losses of the winder mechanics depending on the speed.

## Signal and parameter list




Adder 1 provides two torque inputs. The sum of Add1 (64.06) can be written to other parameters by means of Add1OutDest (64.01). Usually adder 1 is used to write on the torque limit of the speed controller.


## Commissioning hint:

- Add1Cmd (64.04) releases Add1 (64.06). The output is forced to zero if the switch is open.
64.01 Add1OutDest (adder 1, destination of output value)

Index pointer to the sink for adder 1 output value. The format is $-\mathbf{x x y}$, with: $-=$ negate output value, $\mathbf{x x}=$ group and yy = index.
As default, nothing is connected to the output.
Int. Scaling: $1==1 \quad$ Type: SI Volatile: $\quad \mathrm{N}$

### 64.02 Add1In1 (adder 1, input 1)

Source (signal/parameter) for adder 1 input 1 . The format is -xxyy, with: - = negate output value, $\mathbf{x x}=$ group and $\mathrm{yy}=$ index.
Default setting of 6324 equals TensToTorq (63.24).
Int. Scaling: $1==1$ Type: SI Volatile: N $\quad$ or
64.03 Add1In2 (adder 1, input 2)

Source (signal/parameter) for adder 1 input 2 . The format is -xxyy, with: - = negate output value, $\mathbf{x x}=$ group and $y y=$ index.
As default, nothing is connected to the input.
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
64.04 Add1ReleaseCmd (adder 1, release command)

Source to release / block adder 1:
$0=$ NotUsed $\quad$ constant 0 ; block adder 1
1 = Auto depending on winder logic and winder macro, see WinderMacro (61.01), default
2 = Release constant 1; release adder 1
$3=$ WindCtrlWord according to WindCtrlWord (61.16) bit 14
4 = DI1 $\quad 1=$ release adder $1 ; 0=$ block adder 1
5-23 see WriteToSpdChain (61.02)

## Note:

Blocking adder 1 forces its output to zero - Add1 (64.06) $=0$.
Int. Scaling: $1==1$ Type: C Volatile: N
64.05 Unused


Adder 2 provides two torque inputs. The sum of Add2 (64.13) can be written to other parameters by means of Add2OutDest (64.08). Usually adder 2 is used to write on the load compensation for inertia and friction compensation.


## Commissioning hint:

- Add2Cmd (64.11) releases Add2 (64.13). The output is forced to zero if the switch is open.
64.08 Add2OutDest (adder 2, destination of output value)

Index pointer to the sink for adder 2 output value. The format is -xxyy, with: - = negate output value, $\mathbf{x x}=$ group and yy = index.
As default, nothing is connected to the output.
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
64.09 Add2In1 (adder 2, input 1)

Source (signal/parameter) for adder 2 input 1. The format is -xxyy, with: - = negate output value, $\mathbf{x x}=$ group and yy = index.
Default setting of 6230 equals InertiaComp (62.30).
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
64.10 Add2In2 (adder 2, input 2)

Source (signal/parameter) for adder 2 input 2 . The format is -xxyy, with: - = negate output value, $\mathbf{x x}=$ group and $y \mathbf{y}=$ index.
Default setting of 6334 equals FrictionComp (63.34).
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N
64.11 Add2ReleaseCmd (adder 2, release command)

Source to release / block adder 1:
$0=$ NotUsed $\quad$ constant 0 ; block adder 2
1 = Auto depending on winder logic and winder macro, see WinderMacro (61.01), default
$2=$ Release $\quad$ constant 1 ; release adder 2
3 = WindCtrIWord according to WindCtrIWord (61.16) bit 15
4 = DI1 $\quad 1=$ release adder 2; $0=$ block adder 2
5-23 see WriteToSpdChain (61.02)

## Note:

Blocking adder 2 forces its output to zero - Add2 (64.11) $=0$.
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
64.12 Unused
64.13 Add2 (adder 2, output)

Output of adder 2 in percent of MotNomTorque (4.23).
Int. Scaling: $100==1 \%$ Type: I Volatile: Y



84.01 AdapPrgStat (AP status word)

AP status word:

Bit Name	Value Comment	
B0 Bit 0	1	AP is running
	0	AP is stopped
B1 Bit 1	1	AP can be edited
	0	AP cannot be edited
B2 Bit 2	1	AP is being checked
	0	no action
B3 Bit 3	1	AP is faulty
B4 Bit 4	0	AP is OK
	1	AP is protected
	0	AP is unprotected

Faults in AP can be:

- used function block with not at least input 1 connection
- used pointer is not valid
- invalid bit number for function block Bset
- location of function block PI-Bal after PI function block

Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: $\quad$ Y
84.02 FaultedPar (faulted parameters)

AP will be checked before running. If there is a fault, AdapPrgStat (84.01) is set to "faulty" and FaultedPar (84.02) shows the faulty input.

Note:
In case of a problem, check the value and the attribute of the faulty input.
Int. Scaling: $1=1$ Type: 1 Volatile: $Y$. . .
84.03 LocationCounter (location counter)

Location counter for AdapProgCmd (83.01) $=$ SingleStep shows the function block number, which will be executed next.
Int. Scaling: $1==1$ Type: $1 \quad$ Volatile: $\quad$ Y

Signal / Parameter name			
84.04 Block1Type (function block 1 type)   Selects the type for function block 1 [Block Parameter Set 1 (BPS1)]. Detailed description of the type can be found in chapter 'Function blocks':   $0=$ NotUsed function block is not used   1 = ABS absolute value   2 = ADD sum   3 = AND $\quad$ AND   4 = Bitwise bit compare   5 = Bset bit set   6 = Compare compare   7 = Count counter   8 = D-Pot ramp   9 = Event event   10 = Filter filter   11 = Limit limit   12 = MaskSet mask set   $13=\operatorname{Max} \quad$ maximum   $14=\operatorname{Min} \quad$ minimum   $15=$ MulDiv multiplication and division   16 = OR OR   17 = ParRead parameter read   18 = ParWrite parameter write   19 = PI Pl-controller   $20=$ PI-Bal initialization for PI-controller   21 = Ramp ramp   22 SqWav square wave   23 = SR SR flip-flop   24 = Switch-B switch Boolean   $25=$ Switch-I switch integer   26 = TOFF   timer off   $27=$ TON timer on   $28=$ Trigg trigger   $29=$ XOR exclusive OR   30 = Sqrt square root   Type: C Volatile: N	O-	O	
84.05 Block1In1 (function block 1 input 1)   Selects the source for input 1 of function block 1 (BPS1). There are 2 types of inputs, signals/parameters and constants:   Signals/parameters are all signals and parameters available in the drive. The format is -xxyy, with: - = negate signal/parameter, $x x=$ group and $y \mathbf{y}=$ index.   Example:   To connect negated SpeedRef (23.01) set Block1In1 (84.05) $=-2301$ and Block1Attrib (84.08) $=0 \mathrm{~h}$.   To get only a certain bit e.g. RdyRef bit 3 of MainStatWord (8.01) set Block1In1 (84.05) $=801$ and Block1Attrib (84.08) $=3 \mathrm{~h}$.   - Constants are feed directly into the function block input. Declare them by means of Block1Attrib (84.08). Example:   To connect the constant value of 12345 set Block1In1 (84.05) $=12345$ and Block1Attrib (84.08) $=1000 \mathrm{~h}$.   Int. Scaling: $1==1$   Type: SI   Volatile:   N		$\bigcirc$	
84.06 Block1In2 (function block 1 input 2)   Selects the source for input 2 of function block 1 (BPS1). Description see Block1In1 (84.05), except: To get only a certain bit e.g. RdyRef bit 3 of MainStatWord (8.01) set Block1In2 (84.06) $=801$ and Block1Attrib (84.08) $=30 \mathrm{~h}$.   Int. Scaling: $1==1 \quad$ Type: SI Volatile: N		$\bigcirc$	
84.07 Block1In3 (function block 1 input 3)   Selects the source for input 3 of function block 1 (BPS1). Description see Block1In1 (84.05), except: To get only a certain bit e.g. RdyRef bit 3 of MainStatWord (8.01) set Block1In3 (84.07) = 801 and Block1Attrib (84.08) $=300 \mathrm{~h}$.   Int. Scaling: $1==1 \quad$ Type: SI Volatile: $N$			


84.08 Block1Attrib (function block 1 attribute)

Defines the attributes of function block 1 for all three inputs [Block1ln1 (84.05), Block1/n2 (84.06) and Block1In3 (84.07)] (BPS1).
Block1Attrib (84.08) is divided into 4 parts:

- Bit number 0-3 for input 1 to get a certain bit out of a packed Boolean word.
- Bit number 4-7 for input 2 to get a certain bit out of a packed Boolean word.
- Bit number 8-11 for input 3 to get a certain bit out of a packed Boolean word.
- Bit number 12-14 for input 1-3 to feed a constant directly into the input

84.09 Block1Output (function block 1 output)

Function block 1 output, can be used as an input for further function blocks.
Int. Scaling: $1==1$
Type: SI Volatile: Y
84.10 to 84.99

The description of the parameters for function blocks 2 to 16 is the same as for function block 1. For Your convenience the following table shows the parameter numbers of all function blocks1:

Function   block	BlockxType	BlockxIn1   input 1	BlockxIn2   input 2	BlockxIn3   input 1	BlockxAttrib	BlockxOutput   signal	BlockxOut   pointer
1	84.04	84.05	84.06	84.07	84.08	84.09	86.01
2	84.10	84.11	84.12	84.13	84.14	84.15	86.02
3	84.16	84.17	84.18	84.19	84.20	84.21	86.03
4	84.22	84.23	84.24	84.25	84.26	84.27	86.04
5	84.28	84.29	84.30	84.31	84.32	84.33	86.05
6	84.34	84.35	84.36	84.37	84.38	84.39	86.06
7	84.40	84.41	84.42	84.43	84.44	84.45	86.07
8	84.46	84.47	84.48	84.49	84.50	84.51	86.08
9	84.52	84.53	84.54	84.55	84.56	84.57	86.09
10	84.58	84.59	84.60	84.61	84.62	84.63	86.10
11	84.64	84.65	84.66	84.67	84.68	84.69	86.11
12	84.70	84.71	84.72	84.73	84.74	84.75	86.12
13	84.76	84.77	84.78	84.79	84.80	84.81	86.13
14	84.82	84.83	84.84	84.85	84.86	84.87	86.14
15	84.88	84.89	84.90	84.91	84.92	84.93	86.15
16	84.94	84.95	84.96	84.97	84.98	84.99	86.16

## Group 85: User constants

85.01 Constant1 (constant 1)

Sets an integer constant for AP.
Int. Scaling: $1==1 \quad$ Type: SI Volatile: N


Signal and parameter list



## Signal and parameter list

Signal / Parameter name			
86.14 Block14Out (block 14 output)   The value of function block 14 output [Block1Output (84.87)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)].   The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index.   Int. Scaling:   $1=1$   Type:   Volatile:   N	-		
86.15 Block15Out (block 15 output)   The value of function block 15 output [Block1Output (84.93)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)].   The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index.   Int. Scaling:   $1=1$   Type:   Volatile:   N		-	
86.16 Block16Out (block 16 output)   The value of function block 16 output [Block16Output (84.99)] is written to a sink (signal/parameter) by means of this index pointer [e.g. 2301 equals SpeedRef (23.01)].   The format is -xxyy, with: - = negate signal/parameter, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index.   Int. Scaling: $1==1 \quad$ Type: I Volatile: $N$			
Group 88: Internal			
This parameter group contains internal variables and should not be changed by the user			
88.01-88.24 Reserved			
88.25 M1TachMaxSpeed (maximum tacho speed)   Internally used maximum tacho speed. This value is depending on the analog tacho output voltage - e.g. 60 V at 1000 rpm - and the maximum speed of the drive system - which is the maximum of SpeedScaleAct (2.29), M1OvrSpeed (30.16) and M1BaseSpeed (99.04).   This value should only be written to by:   - tacho fine tuning via ServiceMode (99.06) = TachFineTune,   - via M1TachVolt1000 (50.13),   - TachoAdjust block in AP and   - parameter download   Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$   Int. Scaling:   (2.29)   Type: SI Volatile:   N		0	
88.26 Reserved			
88.27 M1TachoTune (tacho tuning factor)   Internally used tacho fine tuning factor. This value should only be written to by:   - tacho fine tuning via ServiceMode (99.06) = TachFineTune,   - TachoAdjust block in AP and   - parameter download   Int. Scaling: $1000==1$ Type: I Volatile: N	$\stackrel{m}{0}$	-	
88.28 Reserved			
88.29 M1TachoGain (tacho tuning gain)   Internally used tacho gain tuning. This value should only be written to by:   - tacho gain tuning via ServiceMode (99.06) = SpdFbAssist,   - M1TachoVolt1000 (50.13) and   - parameter download   Int. Scaling: $1==1 \quad$ Type: $\mathrm{I} \quad$ Volatile: N		$\stackrel{10}{\sim}$	
88.30 Reserved			
88.31 AnybusModType (last connected serial communication module)   Internally used memory for the last attached serial communication module. This value should only be written to by:   - the DCS550 firmware and   - parameter download   Int. Scaling: $1==1$   Type: I   Volatile:   N			

## Signal / Parameter name

## Group 90: Receiving data sets addresses

Addresses for the received data transmitted from the overriding control to the drive. The format is $\mathbf{x x y} y$, with: $x x=$ group and $y=$ index.


90.01 DsetXVal1 (data set $X$ value 1)   Data set 1 value 1 (interval: 3 ms ).   Default setting of 701 equals MainCtrIWord (7.01).   Int. Scaling: $1==1 \quad$ Type: I Volatile:	N		8 ${ }_{8}$	$\overline{\text { 人 }}$	
90.02 DsetXVal2 (data set $X$ value 2 )   Data set 1 value 2 (interval: 3 ms ).   Default setting of 2301 equals SpeedRef (23.01).   Int. Scaling: $1==1$ Type: I Volatile:	N		®	్ָల్ల	
90.03 DsetXVal3 (data set $X$ value 3 )   Data set 1 value 3 (interval: 3 ms ).   Default setting of 2501 equals TorqRefA (25.01).   Int. Scaling:   $1=1$   Type: I   Volatile:	N		®	ָ	,
90.04 DsetXplus2Val1 (data set $\mathrm{X}+2$ value 1)   Data set 3 value 1 (interval: 3 ms ).   Default setting of 702 equals AuxCtrlWord (7.02).   Int. Scaling:   $1==1$   Type: I   Volatile:	N		-	N	,
90.05 DsetXplus2Val2 (data set X+2 value 2)   Data set 3 value 2 (interval: 3 ms ).   Default setting of 703 equals AuxCtrIWord2 (7.03).   Int. Scaling:   $1=1$   Type: I   Volatile:	N		8	읏	,
90.06 DsetXplus2Val3 (data set $\mathbf{X}+2$ value 3) Data set 3 value 3 (interval: 3 ms ).   Int. Scaling: $1==1$   Type: I   Volatile:	N			-	,
90.07 DsetXplus4Val1 (data set $\mathrm{X}+4$ value 1)   Data set 5 value 1 (interval: 3 ms ).   Int. Scaling: $1==1$   Type: I   Volatile:	N			-	,
90.08 DsetXplus4Val2 (data set $X+4$ value 2) Data set 5 value 2 (interval: 3 ms ).   Int. Scaling: $1==1$   Type: I   Volatile:	N			0	,
90.09 DsetXplus4Val3 (data set X+4 value 3)   Data set 5 value 3 (interval: 3 ms ).   Data set address $=$ Ch0 DsetBaseAddr (70.24) +4 .   Int. Scaling: $1==1$ Type: I Volatile:	N		®	-	,
90.10 DsetXplus6Val1 (data set X+6 value 1) Data set 7 value 1 (interval: 3 ms ).   Int. Scaling: $1==1$   Type: I   Volatile:	N		-		


Signal / Parameter name
Group 92: Transmit data sets addresses

Addresses for the transmit data send from the drive to the overriding control. The format is xxyy, with: $x x=$ group and $y \mathbf{y}=$ index.


92.01 DsetXplus1Val1 (data set $\mathbf{X + 1}$ value 1)   Data set 2 value 1 (interval: 3 ms )   Default setting of 801 equals MainStatWord (8.01).   Int. Scaling: $1==1 \quad$ Type: I Volatile:	N		®	$\bar{\infty}$	
92.02 DsetXplus1Val2 (data set $\mathbf{X + 1}$ value 2)   Data set 2 value 2 (interval: 3 ms ).   Default setting of 104 equals MotSpeed (1.04).   Int. Scaling:   $1=1$   Type: I   Volatile:	N		®	$\stackrel{\text { ¢ }}{-}$	
92.03 DsetXplus1Val3 (data set $\mathbf{X + 1}$ value 3) Data set 2 value 3 (interval: 3 ms ).   Default setting of 209 equals TorqRef2 (2.09).   Int. Scaling:   $1=1$   Type: I   Volatile:	N		-	- ${ }_{\sim}^{\circ}$	
92.04 DsetXplus3Val1 (data set X+3 value 1)   Data set 4 value 1 (interval: 3 ms ).   Default setting of 802 equals AuxStatWord (8.02).   Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile:	N	-	-	N-	
92.05 DsetXplus3Val2 (data set X+3 value 2)   Data set 4 value 2 (interval: 3 ms ).   Default setting of 101 equals MotSpeedFilt (1.01).   Int. Scaling: $1==1 \quad$ Type: I Volatile:	N		®	$\stackrel{\square}{-}$	
92.06 DsetXplus3Val3 (data set X+3 value 3)   Data set 4 value 3 (interval: 3 ms ).   Default setting of 108 equals MotTorq (1.08).   Int. Scaling: $1==1 \quad$ Type: I Volatile:	N		-	$\stackrel{\sim}{\circ}$	
92.07 DsetXplus5Val1 (data set X+5 value 1)   Data set 6 value 1 (interval: 3 ms ).   Default setting of 901 equals FaultWord1 (9.01).   Int. Scaling:   1 == 1   Type: I   Volatile:	N		®	$\bar{\delta}$	
92.08 DsetXplus5Val2 (data set X+5 value 2)   Data set 6 value 2 (interval: 3 ms ). Data.   Default setting of 902 equals FaultWord2 (9.02).   Int. Scaling:   $1=1$   Type: I   Volatile:	N		8	\%	
92.09 DsetXplus5Val3 (data set $\mathrm{X}+5$ value 3)   Data set 6 value 3 (interval: 3 ms ).   Default setting of 903 equals FaultWord3 (9.03).   Int. Scaling:   $1=1$   Type: I   Volatile:	N		8	¢\%	
92.10 DsetXplus7Val1 (data set $X+7$ value 1) Data set 8 value 1 (interval: 3 ms ).   Default setting of 904 equals FaultWord4 (9.04).   Int. Scaling:   1 == 1   Type: I   Volatile:	N		-	¢	


Signal / Parameter name	
Group 97: Measurements	

### 97.01 TypeCode (type code)

TypeCode (97.01) is preset in the factory and is write protected. It identifies the drives current-, voltage-, temperature measurement and its quadrant type. To un-protect the type code set ServiceMode (99.06) = SetTypeCode. The change of the type code is immediately taken over and ServiceMode (99.06) is automatically set back to NormalMode:

$0=$ None	no type code set
$1=$ S01-0020-05	type code, see table
to	

xxx $=$ S02-1000-05 type code, see table
The drive's basic type code: DCS550-AAX-YYYY-ZZ

Product family:	DCS550		
Type:	AA	$=\mathrm{S} 0$	Standard converter modules
Bridge type:	X	$=1$	Single bridge (2-Q)
		$=2$	2 anti parallel bridges (4-Q)
Module type:	YYYY	$=$	Rated DC current
Rated AC voltage:	ZZ	$=05$	$230 \mathrm{~V}_{\mathrm{AC}}-525 \mathrm{~V}_{\mathrm{AC}}$

Int. Scaling: 1 == 1

### 97.02-97.03 Unused

97.04 S MaxBrdgTemp (set: maximum bridge temperature)

Adjustment of the converters heat sink temperature tripping level in degree centigrade:
$0^{\circ} \mathrm{C}=\quad$ take value from TypeCode (97.01), default
$1^{\circ} \mathrm{C}$ to $149{ }^{\circ} \mathrm{C}=\quad$ take value from $\mathrm{S} \mathrm{MaxBrdgTemp} \mathrm{(97.04)}$
$150^{\circ} \mathrm{C}=\quad$ the temperature supervision is inactive, if S MaxBrdgTemp (97.04) is set to $150^{\circ} \mathrm{C}$
This value overrides the type code and is immediately visible in MaxBridgeTemp (4.17).
Int. Scaling: $1==1^{\circ} \mathrm{C} \quad$ Type: $\mathrm{I} \quad$ Volatile: N
97.05-97.06 Unused
97.07 S BlockBridge2 (set: block bridge 2)

Bridge 2 can be blocked:
$0=$ Auto
1 = BlockBridge2
2 = RelBridge2
operation mode is taken from TypeCode (97.01), default
release bridge 2 (== 4-Q operation), for e.g. $4-Q$ rebuild kits
This value overrides the type code and is immediately visible in QuadrantType (4.15).
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
97.08 Unused
97.09 MainsCompTime (mains compensation time)

Mains voltage compensation filter time constant. Is used for the mains voltage compensation at the current controller output.
Setting MainsCompTime (97.09) to 1000 ms disables the mains voltage compensation.
Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N
97.10-97.12 Unused
97.13 DevLimPLL (phase locked loop deviation limit)

Maximum allowed deviation of the PLL controller. The current controller is blocked in case the limit is reached

- see CurCtrIStat2 (6.04) bit 13:
for 50 Hz mains is valid: $360^{\circ}=20 \mathrm{~ms}=\frac{1}{50 \mathrm{~Hz}}=20.000$
for 60 Hz mains is valid: $360^{\circ}=16.67 \mathrm{~ms}=\frac{1}{60 \mathrm{~Hz}}==16.667$
The PLL input can be seen in PLLIn (3.20). The PLL output can be seen in MainsFreqAct (1.38).
Int. Scaling: $100=1^{\circ}$ Type: । Volatile: N
N can be seen in MainsFreqAct (1.38).



## Signal and parameter list



Signal / Parameter name	
Group 98: Option modules	

### 98.01 Unused

### 98.02 CommModule (communication modules)

For the communication modules following selections are available:
$0=$ NotUsed no communication used, default
1 = Fieldbus $\quad$ The drive communicates with the overriding control via an R-type fieldbus adapter connected in option slot 1 . This choice is not valid for the Modbus.
$2=$ Modbus $\quad$ The drive communicates with the overriding control via the Modbus (RMBA-xx)
Attention:
To ensure proper connection and communication of the communication modules with the SDCS-CON-F use the screws included in the scope of delivery.
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
98.03 DIO ExtModule1 (digital extension module 1)

First RDIO-xx extension module interface selection. DIO ExtModule1 (98.03) releases DI9, DI10, DI11, DO9 and DO10.
The module can be connected in option slot 1 or 3:
$0=$ NotUsed no first RDIO-xx is used, default
$1=$ Slot1 first RDIO-xx is connected in option slot 1
2 = reserved
3 = Slot3
first RDIO-xx is connected in option slot 3
The drive trips with F508 I/OBoardLoss [FaultWord1 (9.01) bit 7], if the RDIO-xx extension module is chosen, but not connected or faulty.

## Notes:

- For faster input signal detection disable the hardware filters of the RDIO-xx by means of dip switch S2. Always have the hardware filter enabled when an AC signal is connected.
- The digital outputs are available via DO CtrlWord (7.05).


## Attention:

To ensure proper connection and communication of the RDIO-xx board with the SDCS-CON-F use the screws included in the scope of delivery.
Switches on the $1^{\text {st }}$ RDIO-xx:


## Configuration switch (S2)

For faster detection the hardware filter of the digital input in question can be disabled. Disabling the hardware filtering will however reduce the noise immunity of the input.


## Signal and parameter list

## Signal / Parameter name

98.04 DIO ExtModule2 (digital extension module 2)

Second RDIO-xx extension module interface selection. DIO ExtModule2 (98.04) releases DI12, DI13, DI14, DO11 and DO12.
The module can be connected in option slot 1 or 3 :
$0=$ NotUsed no second RDIO-xx is used, default
1 = Slot1 second RDIO-xx is connected in option slot 1
2 = reserved
3 = Slot3 second RDIO-xx is connected in option slot 3
The drive trips with F508 I/OBoardLoss [FaultWord1 (9.01) bit 7], if the RDIO-xx extension module is chosen, but not connected or faulty.

## Notes:

- For faster input signal detection disable the hardware filters of the RDIO-xx by means of dip switch S2.

Always have the hardware filter enabled when an AC signal is connected.

- The digital inputs are available via DI StatWord (8.05)
- The digital outputs are available via DO CtrIWord (7.05).


## Attention:

To ensure proper connection and communication of the RDIO-xx board with the SDCS-CON-F use the screws included in the scope of delivery.
Switches on the $2^{\text {nd }}$ RDIO-xx:


Configuration switch (S2)
For faster detection the hardware filter of the digital input in question can be disabled. Disabling the hardware filtering will however reduce the noise immunity of the input.


98.06 AIO ExtModule (analog extension module)

RAIO-xx extension module interface selection. AIO ExtModule (98.06) releases AI5, AI6, AO3 and AO4.
The module can be connected in option slot 1 or 3:
$0=$ NotUsed $\quad$ no RAIO-xx is used, default
1 = Slot1 RAIO-xx is connected in option slot 1
2 = reserved
3 = Slot3 RAIO-xx is connected in option slot 3
The drive trips with F508 I/OBoardLoss [FaultWord1 (9.01) bit 7], if the RAIO-xx extension module is chosen, but not connected or faulty.

## Attention:

To ensure proper connection and communication of the RAIO-xx board with the SDCS-CON-F use the screws included in the scope of delivery.
Switches on the $1^{\text {st }}$ RAIO-xx:


## Configuration switch (S2)

Select the operation of the analog inputs using the configuration DIP switch (S2) on the circuit board of the module. The drive parameters must be set accordingly.
Input mode selection:
In bipolar mode, the analogue inputs can handle positive and negative signals. The resolution of the $A / D$ conversion is 11 data bits ( +1 sign bit). In unipolar mode (default), the analogue inputs can handle positive signals only. The resolution of the A/D conversion is 12 data bits.

DIP switch setting		Input signal type
Analogue input Al1	Analogue input AI2	
W		
T1T 1	717]	$\begin{gathered} \pm 0(4) \ldots .20 \mathrm{~mA} \\ \pm 0(2) \ldots 10 \mathrm{~V} \end{gathered}$
123456	123456	$\pm 0 . .2 \mathrm{~V}$
N	ON	0(4)... 20 mA
7070		$0(2) \ldots 10 \mathrm{~V}$
	U-80	0... 2 V
123456	123456	(Default)

Input signal type selection:
Each input can be used with a current or voltage signal.


Signal / Parameter name			
Group 99: Start-up data			
99.01 Language (language)   Select language:   0 = English default   1 = reserved   2 = Deutsch   3 = Italiano   4 = Español   5 = reserved   6 = reserved   7 = Français   Int. Scaling: $1==1 \quad$ Type: C Volatile:			
99.02 M1NomVolt (nominal DC voltage)   Nominal armature voltage (DC) from the motor rating plate.   Int. Scaling: $1==1 \mathrm{~V}$   Type: Volatile:	$\sim \bigcirc$		
99.03 M1NomCur (nominal DC current)   Nominal armature current (DC) from the motor rating plate.   Int. Scaling: $1==1 \mathrm{~A}$   Type: Volatile:	0		
99.04 M1BaseSpeed (base speed)   Base speed from the rating plate, usually the field weak point. M1BaseSpeed (99.04) is must be set in the range of:   - 0.2 to 1.6 times of SpeedScaleAct (2.29).   If the scaling is out of range A124 SpeedScale [AlarmWord2 (9.07) bit 7] is generated.   Int. Scaling: $10==1 \mathrm{rpm}$ Type: । Volatile: N	응	$\stackrel{8}{\circ}$	
99.05 Unused			
99.06 ServiceMode (service mode)   ServiceMode (99.06) contains several test- and auto tuning procedures.   The drive mode is automatically set to NormalMode after an autotuning procedure or after the thyristor diagnosis is finished or failed. In case errors occur during the selected procedure A121 AutotuneFail [AlarmWord2 (9.07) bit 4] is generated. The reason of the error can be seen in Diagnosis (9.11).   SetTypeCode is automatically set to NormalMode after the next power up.   0 = NormalMode   normal operating mode depending on OperModeSel (43.01), default   1 = ArmCurAuto   autotuning armature current controller   2 = FieldCurAuto   autotuning field current controller   3 = EMF FluxAuto   autotuning EMF controller and flux linearization   $4=$ SpdCtrlAuto   autotuning speed controller   5 = SpdFbAssist   test speed feedback, see M1SpeedFbSel (50.03), M1EncPulseNo (50.04) and   $6=$ TachFineTune   M1TachoVolt1000 (50.13)   tacho fine tuning, see M1TachoAdjust (50.12)   7 = ThyDiagnosis   the thyristor diagnosis mode is set with TestFire (97.28), the result is shown in   Diagnosis (9.11)   $8=$ FindDiscCur   find discontinuous current limit   9 = SetTypeCode   set type code, releases following parameters:   TypeCode (97.01)   10 = LD FB Config   reserved for future use (load fieldbus configuration file)   Note:   The reference chain is blocked while ServiceMode (99.06) $\neq$ NormalMode.   Int. Scaling: $1==1$   Type:   C   Volatile:			



### 99.07 AppIRestore (application restore)

Setting AppIRestore (99.07) = Yes starts the loading / storing of the macro (preset parameter set) selected by means of AppIMacro (99.08). AppIRestore (99.07) is automatically set back to Done after the chosen action is finished:
$0=$ Done no action or macro change completed, default
1 = Yes macro selected with AppIMacro (99.08) will be loaded into the drive
Notes:

- Macro changes are only accepted in Off state [MainStatWord (8.01) bit $1=0$ ].
- It takes about 2 s , until the new parameter values are active.

Int. Scaling: $1==1 \quad$ Type: C Volatile: Y
99.08 AppIMacro (application macro)

AppIMacro (99.08) selects the macro (preset parameter sets) to be loaded / stored into the RAM and flash. In addition to the preset macros, two user-defined macros (User1 and User2) are available.
The operation selected by ApplMacro (99.08) is started immediately by setting ApplRestore (99.07) = Yes.
ApplMacro (99.08) is automatically set back to NotUsed after the chosen action is finished. The selected macro is shown in MacroSel (8.10):
0 = NotUsed default
1 = Factory
2 = User1Load
3 = User1Save
4 = User2Load
5 = User2Save
6 = Standard
7 = Man/Const
8 = Hand/Auto
9 = Hand/MotPot
$10=$ reserved
$11=$ MotPot
$12=$ TorqCtrl
13 = TorqLimit
14 = DemoStandard
15 = 2WreDCcontUS
$16=3 W r e D C c o n t U S$
17 = 3WreStandard
load macro factory (default parameter set) into RAM and flash - User1 and User2
will not be influenced
load macro User1 into RAM and flash
save actual parameter set form RAM into macro User1
load macro User2 into RAM and flash
save actual parameter set form RAM into macro User2
load macro standard into RAM and flash
load macro manual / constant speed into RAM and flash
load macro hand (manual) / automatic into RAM and flash
load macro hand (manual) / motor potentiometer into RAM and flash
load macro motor potentiometer into RAM and flash
load macro torque control into RAM and flash
load macro torque limit into RAM and flash
load macro demo standard into RAM and flash
load macro 2 wire with US style DC-breaker into RAM and flash
load macro 3 wire with US style DC-breaker into RAM and flash
load macro 3 wire standard into RAM and flash

## Notes:

- When loading a macro, group 99 is set / reset as well.
- If User1 is active, AuxStatWord (8.02) bit 3 is set. If User2 is active, AuxStatWord (8.02) bit 4 is set.
- It is possible to change all preset parameters of a loaded macro. On a macro change or an application restore command of the actual macro the macro depending parameters are restored to the macro's default values.
- In case macro User1 or User2 is loaded by means of ParChange (10.10), it is not saved into the flash and thus not valid after the next power on.
Int. Scaling: $1==1 \quad$ Type: C Volatile: $\quad Y$
99.09 DeviceName (device name)

DeviceName (99.09) is fixed set to DCS550 and cannot be changed.

## Note:

This parameter is only visible if a SDCS-COM-8 is connected.
Int. Scaling: $1==1 \quad$ Type: C Volatile: N
99.10 NomMainsVolt (nominal AC mains voltage)

Nominal mains voltage (AC) of the supply. The default and maximum values are preset automatically according to TypeCode (97.01).
Absolute max. is 525 V
Int. Scaling: $1==1 \mathrm{~V}$ Type: $\mathrm{I} \quad$ Volatile: N
99.11 M1NomFldCur (nominal field current)

Nominal field current from the motor rating plate.
Int. Scaling: $100=1$ A Type: I Volatile: N

Signal / Parameter name			
99.12 M1UsedFexType (used field exciter type)   Used field exciter type:   $0=$ NotUsed   no field exciter connected   1 = OnBoard integrated 1-Q field exciter, default   If the fex type is changed, its new value is taken over after the next power-up.   Int. Scaling: $1==1$   Type: C   Volatile:   N			
99.13-99.14 Unused			
99.15 Pot1 (potentiometer 1)   Constant test reference 1 for the square wave generator.   Note:   The value is depending on the chosen destination of the square wave [e.g. SqrWaveIndex (99.18) $=2301$   relates to SpeedScaleAct (2.29)]:   - $100 \%$ voltage $==10,000$   - $100 \%$ current $==10,000$   - $100 \%$ torque $==10,000$   - $100 \%$ speed $==$ SpeedScaleAct (2.29) $==20,000$   Int. Scaling: $1==1 \quad$ Type: SI Volatile: $N$	$\infty$   0   $\sim$   $\sim$   $\sim$	0	
99.16 Pot2 (potentiometer 2)   Constant test reference 2 for the square wave generator.   Note:   The value is depending on the chosen destination of the square wave [e.g. SqrWaveIndex (99.18) $=2301$   relates to SpeedScaleAct (2.29)]:   - $100 \%$ voltage $==10,000$   - $100 \%$ current $==10,000$   - $100 \%$ torque $==10,000$   - $100 \%$ speed $==$ SpeedScaleAct (2.29) $==20,000$   Int. Scaling: $1==1$ Type: SI Volatile: N	0   0      $\sim$   $\sim$		
99.17 SqrWavePeriod (square wave period)   The time period for the square wave generator.   Int. Scaling:   $100==1 \mathrm{~s}$   Type: I   Volatile:	\%	은	
99.18 SqrWaveIndex (square wave index)   Index pointer to the source (signal/parameter) for the square wave generator. E.g. signal [e.g. 2301 equals SpeedRef (23.01)].   Note:   After a power-up, SqrWavelndex (99.18) is set back to 0 and thus disables the square wave generator.   Int. Scaling: $1==1 \quad$ Type: $1 \quad$ Volatile: $\quad$ Y	- $\stackrel{\text { ® }}{\text { ® }}$		
99.19 TestSignal (square wave signal form)   Signal forms for the square wave generator:			

## DCS Control Panel

## Chapter overview

This chapter describes the handling of the DCS Control Panel.

## Start-up

The commissioning configures the drive and sets parameters that define how the drive operates and communicates. Depending on the control and communication requirements, the commissioning requires any or all of the following:

- The Start-up Assistant (via DCS Control Panel or DWL) steps you through the default configuration. The DCS Control Panel Start-up Assistant runs automatically at the first power up, or can be accessed at any time using the main menu.
- Select application macros to define common, system configurations.
- Additional adjustments can be made using the DCS Control Panel to manually select and set individual parameters. See chapter Signal and parameter list.


## DCS Control Panel

Use the DCS Control Panel to control the drive, to read status data, to adjust parameters and to use the preprogrammed assistants.

## Features:

The DCS Control Panel features:

- Alphanumeric LCD display
- Language selection for the display by means of Language (99.01)
- Panel can be connected or detached at any time
- Start-up Assistant for ease drive commissioning
- Copy function, parameters can be copied into the DCS Control Panel memory to be downloaded to other drives or as backup
- Context sensitive help
- Fault- and alarm messages including fault history


## Display overview

The following table summarizes the button functions and displays of the DCS Control Panel.


## General display features

## Soft key functions:

The text displayed just above each key defines the soft key functions.
Display contrast:
To adjust display contrast, simultaneously press the MENU key and UP or DOWN, as appropriate.

## Output mode

Use the output mode to read information on the drive's status and to operate the drive. To reach the output mode, press EXIT until the LCD display shows status information as described below.
Status information:

LOC $U$	15rpm
15.0 rpm	
3.7 V	
17.3 A	
DIR	

Top: The top line of the LCD display shows the basic status information of the drive:

- LOC indicates that the drive control is local from the DCS Control Panel.
- REM indicates that the drive control is remote, via local I/O or overriding control.
- 2 indicates the drive and motor rotation status as follows:

DCS Control Panel display	Significance
Rotating arrow (clockwise or   counter clockwise)	Drive is running and at setpoint
Shaft direction is forward 2 or reverse	
Rotating dotted blinking arrow	Drive is running but not at setpoint
Stationary dotted arrow	Start command is present, but motor is not   running. E.g. start enable is missing

- Upper right position shows the active reference, when in local from DCS Control Panel.

Middle: Using parameter Group 34, the middle of the LCD display can be configured to display up to three parameter values:

- By default, the display shows three signals.
- Use DispParam1Sel (34.01), DispParam2Sel (34.08) and DispParam3Sel (34.15) to select signals or parameters to display. Entering value 0 results in no value displayed. For example, if $34.01=0$ and 34.15 $=0$, then only the signal or parameter specified by 34.08 appears on the DCS Control Panel display.

Bottom: The bottom of the LCD display shows:

- Lower corners show the functions currently assigned to the two soft keys.
- Lower middle displays the current time (if configured to do so).


## Operating the Drive:

LOC/REM: Each time the drive is powered up, it is in remote control (REM) and is controlled as specified in CommandSel (10.01).
To switch to local control (LOC) and control the drive using the DCS Control Panel, press the $\stackrel{\text { ROCM }}{ }$ button.

- When switching from local control (LOC) to remote control (REM) the drive's status (e.g. On, Run) and the speed reference of the remote control are taken.
To switch back to remote control (REM) press the $\stackrel{R}{R E M}$ button.
Start/Stop: To start and stop the drive press the START and STOP buttons.
Shaft direction: To change the shaft direction press DIR.
Speed reference: To modify the speed reference (only possible if the display in the upper right corner is highlighted) press the UP or DOWN button (the reference changes immediately).

Modify the speed reference via the DCS Control Panel when in local control (LOC).
Note:
The START / STOP buttons, shaft direction (DIR) and reference functions are only valid in local control (LOC).

## Other modes

Below the output mode, the DCS Control Panel has:

- Other operating modes are available through the MAIN MENU.
- A fault mode that is triggered by faults. The fault mode includes a diagnostic assistant mode.
- An alarm mode that is triggered by drive alarms.

LOC U MAIN MENU---------------1

## PARAMETERS

ASSISTANTS MACROS
EXIT
ENTER
Access to the MAIN MENU and other modes:
To reach the MAIN MENU:

1. Press EXIT, as necessary, to step back through the menus or lists associated with a particular mode. Continue until you are back to the output mode.
2. Press MENU from the output mode. At this point, the middle of the display is a listing of the other modes, and the top-right text says "MAIN MENU".
3. Press UP/DOWN to scroll to the desired mode.
4. Press ENTER to enter the mode that is highlighted.

Following modes are available in the MAIN MENU:

1. Parameters mode
2. Start-up assistants mode
3. Macros mode (currently not used)
4. Changed parameters mode
5. Fault logger mode
6. Clock set mode
7. Parameter backup mode
8. I/O settings mode (currently not used)

The following sections describe each of the other modes.

## Parameters mode:

Use the parameters mode to view and edit parameter values:

1. Press UP/DOWN to highlight PARAMETERS in the MAIN MENU, then press ENTER.

LOC U MAIN MENU----------------1
PARAMETERS
ASSISTANTS
MACROS
EXIT ENTER
2. Press UP/DOWN to highlight the appropriate parameter group, then press SEL.

LOC U PAR GROUPS-------------01
99 Start-up data
01 Phys Act Values
02 SPC Signals
03 Ref/Act Values
04 Information
EXIT $\quad$ SEL
3. Press UP/DOWN to highlight the appropriate parameter in a group, then press EDIT to enter PAR EDIT mode.


## Note:

The current parameter value appears below the highlighted parameter.
4. Press UP/DOWN to step to the desired parameter value.


## Note:

To get the parameter default value press UP/DOWN simultaneously.
5. Press SAVE to store the modified value and leave the PAR EDIT mode or press CANCEL to leave the PAR EDIT mode without modifications.
6. Press EXIT to return to the listing of parameter groups, and again to step back to the MAIN MENU.

## Start-up assistants mode:

Use the start-up assistants mode for basic commissioning of the drive.
When the drive is powered up the first time, the start-up assistants guide you through the setup of the basic parameters.
There are seven start-up assistants available. They can be activated one after the other, as the ASSISTANTS menu suggests, or independently. The use of the assistants is not required. It is also possible to use the parameter mode instead.

The assistant list in the following table is typical:
Name plate data Enter the motor data, the mains (supply) data, the most important protections and follow the   instructions of the assistant.   After filling out the parameters of this assistant it is - in most cases - possible to turn the motor for the   first time.   Macro assistant Selects an application macro.   Autotuning field current    controller Enter the field circuit data and follow the instructions of the assistant.   During the autotuning the main respectively field contactor will be closed, the field circuit is measured   by means of increasing the field current to nominal field current and the field current control   parameters are set. The armature current is not released while the autotuning is active and thus the   motor should not turn.   When the autotuning is finished successfully, the parameters changed by the assistant are shown for   confirmation. If the assistant fails, it is possible to enter the fault mode for more help.   Autotuning armature current Enter the motor nominal current, the basic current limitations and follow the instructions of the   assistant.   During the autotuning the main contactor will be closed, the armature circuit is measured by means of   armature current bursts and the armature current control parameters are set. The field current is not   released while the autotuning is active and thus the motor should not turn, but due to remanence in   the field circuit about 40\% of all motors will turn (create torque). Lock these motors.   When the autotuning is finished successfully, the parameters changed by the assistant are shown for   confirmation. If the assistant fails, it is possible to enter the fault mode for more help.   Speed feedback assistant Enter the EMF speed feedback parameters, - if applicable - the parameters for the pulse encoder   respectively the analog tacho and follow the instructions of the assistant.   The speed feedback assistant detects the kind of speed feedback the drive is using and provides help   to set up pulse encoders or analog tachometers.   During the autotuning the main contactor and the field contactor - if existing - will be closed and the   motor will run up to base speed [M1BaseSpeed (99.04)]. During the whole procedure, the drive will be   in EMF speed control despite the setting of M1SpeedFbSel (50.O3).   When the assistant is finished successfully, the speed feedback is set. If the assistant fails, it is    possible to enter the fault mode for more help.
Autotuning speed controller
Enter the motor base speed, the basic speed limitations, the speed filter time and follow the
instructions of the assistant.


	During the autotuning the main contactor and the field contactor - if existing - will be closed, the ramp   is bypassed and torque respectively current limits are valid. The speed controller is tuned by means of   speed bursts up to base speed [M1BaseSpeed (99.04)] and the speed controller parameters are set.   Attention:   During the autotuning the torque limits will be reached.   When the autotuning is finished successfully, the parameters changed by the assistant are shown for   confirmation. If the assistant fails, it is possible to enter the fault mode for more help.   Attention:   This assistant is using the setting of M1SpeedFbSel (50.03). If using setting Encoder or Tacho make   sure, the speed feedback is working properly!
Field weakening assistant   (only used when maximum speed   is higher than base speed)	Enter the motor data, the field circuit data and follow the instructions of the assistant.   During the autotuning the main contactor and the field contactor - if existing - will be closed and the   motor will run up to base speed [M1BaseSpeed (99.04)]. The EMF controller data are calculated, the   flux linearization is tuned by means of a constant speed while decreasing the field current and the   EMF controller respectively flux linearization parameters are set.   When the autotuning is finished successfully, the parameters changed by the assistant are shown for   confirmation. If the assistant fails, it is possible to enter the fault mode for more help.

1. Press UP/DOWN to highlight ASSISTANTS in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight the appropriate start-up assistant, then press SEL to enter PAR EDIT mode.
3. Make entries or selections as appropriate.
4. Press SAVE to save settings. Each individual parameter setting is valid immediately after pressing SAVE. Press EXIT to step back to the MAIN MENU.

## Macros mode:

Currently not used!

## Changed parameters mode:

Use the changed parameters mode to view and edit a listing of all parameter that have been changed from their default values:

1. Press UP/DOWN to highlight CHANGED PAR in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight a changed parameter, then press EDIT to enter PAR EDIT mode.

## Note:

The current parameter value appears below the highlighted parameter.
3. Press UP/DOWN to step to the desired parameter value.

## Note:

To get the parameter default value press UP/DOWN simultaneously.
4. Press SAVE to store the modified value and leave the PAR EDIT mode or press CANCEL to leave the PAR EDIT mode without modifications.

## Note:

If the new value is the default value, the parameter will no longer appear in the changed parameter list.
5. Press EXIT to step back to the MAIN MENU.

## Fault logger mode:

Use the fault logger mode to see the drives fault, alarm and event history, the fault state details and help for the faults:

1. Press UP/DOWN to highlight FAULT LOGGER in the MAIN MENU, then press ENTER to see the latest faults (up to 20 faults, alarms and events are logged).
2. Press DETAIL to see details for the selected fault. Details are available for the three latest faults, independent of the location in the fault logger.
3. Press DIAG to get additional help (only for faults).
4. Press EXIT to step back to the MAIN MENU.

## Clock set mode:

- Use the Clock set mode to:
- Enable or disable the clock function.
- Select the display format.

Set date and time.

1. Press UP/DOWN to highlight CLOCK SET in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight the desired option, then press SEL.
3. Choose the desired setting, and then press SEL or OK to store the setting or press CANCEL to leave without modifications.
4. Press EXIT to step back to the MAIN MENU.

## Note:

To get the clock visible on the LCD display at least one change has to be done in the clock set mode and the DCS Control Panel has to be de-energized and energized again.

## Parameter backup mode:

The DCS Control Panel can store a full set of drive parameters.

- AP will be uploaded and downloaded.
- The type code of the drive is write protected and has to be set manually by means of ServiceMode (99.06) = SetTypeCode and TypeCode (97.01).
The parameter backup mode has following functions:
- UPLOAD TO PANEL: Copies all parameters from the drive into the DCS Control Panel. This includes both user sets (User1 and User2) - if defined - and internal parameters such as those created by tacho fine tuning. The DCS Control Panel memory is non-volatile and does not depend on its battery. Can only be done in drive state Off and local from DCS Control Panel.
- DOWNLOAD FULL SET: Restores the full parameter set from the DCS Control Panel into the drive. Use this option to restore a drive, or to configure identical drives. Can only be done in drive state Off and local from DCS Control Panel.


## Note:

This download does not include the user sets.

- DOWNLOAD APPLICATION: Currently not used!

The general procedure for parameter backup operations is:

1. Press UP/DOWN to highlight PAR BACKUP in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight the desired option, then press SEL.
3. Wait until the service is finished, then press OK.
4. Press EXIT to step back to the MAIN MENU.

## I/O settings mode:

Currently not used!

## Maintenance

## Cleaning:

Use a soft damp cloth to clean the DCS Control Panel. Avoid harsh cleaners, which could scratch the display window.

## Battery:

A battery is used in the DCS Control Panel to keep the clock function available and enabled. The battery keeps the clock operating during power interruptions. The expected life for the battery is greater than ten years. To remove the battery, use a coin to rotate the battery holder on the back of the control panel. The type of the battery is CR2032.

## Note:

The battery is not required for any DCS Control Panel or drive functions, except for the clock.

## Fault tracing

## Chapter overview

This chapter describes the protections and fault tracing of the drive.

## Fault modes

Depending on the trip level of the fault, the drive reacts differently. The drive's reaction to a fault with trip level 1 and 2 is fixed. See also paragraph Fault signals of this manual. The reaction to a fault of level 3 and 4 can be chosen by means of SpeedFbFItMode (30.36) respectively FaultStopMode (30.30).

## Converter protection

## Auxiliary undervoltage

If the auxiliary supply voltage fails while the drive is in RdyRun state (MSW bit 1), fault F501 AuxUnderVolt is generated.

Auxiliary supply voltage	Trip level
$230 \mathrm{~V}_{\mathrm{AC}}$	$<95 \mathrm{~V}_{\mathrm{AC}}$
$115 \mathrm{~V}_{\mathrm{AC}}$	$<95 \mathrm{~V}_{\mathrm{AC}}$
$230 \mathrm{~V}_{\mathrm{DC}}$	$<140 \mathrm{~V}_{\mathrm{DC}}$

## Armature overcurrent

The nominal value of the armature current is set with M1NomCur (99.02). The overcurrent level is set by means of ArmOvrCurLev (30.09). Additionally the actual current is monitored against the overcurrent level of the converter module. The converter's actual overcurrent level can be read from ConvOvrCur (4.16).
Exceeding one of the two levels causes F502 ArmOverCur.

## Converter overtemperature

The maximum temperature of the bridge can be read from MaxBridgeTemp (4.17) and is automatically set by TypeCode (97.01) or manually set by S MaxBrdgTemp (97.04).
Exceeding this level causes F504 ConvOverTemp. The threshold for A104 ConvOverTemp is $5^{\circ} \mathrm{C}$ below the tripping level. The measured temperature can be read from BridgeTemp (1.24).
If the measured temperature drops below minus $10^{\circ} \mathrm{C}$, F504 ConvOverTemp is generated.

## Auto-reclosing (mains undervoltage)

Auto-reclosing allows continuing drive operation immediately after a short mains undervoltage without any additional functions in the overriding control system.
In order to keep the overriding control system and the drive control electronics running through short mains undervoltage, an UPS is needed for the $115 / 230 \mathrm{~V}_{\mathrm{AC}}$ auxiliary voltages. Without the UPS all DI like e.g. Estop, start inhibition, acknowledge signals etc. would have false states and trip the drive although the system itself could stay alive. In addition, the control circuits of the main contactor must be supplied during the mains undervoltage.
Auto-reclosing defines whether the drive trips immediately with F512 MainsLowVolt or if the drive will continue running after the mains voltage returns. To activate the auto-reclosing set PwrLossTrip (30.21) = Delayed.

## Short mains undervoltage

The supervision of mains undervoltage has two levels:

1. UNetMin1 (30.22) alarm, protection and trip level
2. UNetMin2 (30.23) trip level

If the mains voltage falls below UNetMin1 (30.22) but stays above UNetMin2 (30.23), the following actions take place:

1. the firing angle is set to ArmAlphaMax (20.14),
2. single firing pulses are applied in order to extinguish the current as fast as possible,
3. the controllers are frozen,
4. the speed ramp output is updated from the measured speed and
5. A111 MainsLowVolt is set as long as the mains voltage recovers, before PowrDownTime (30.24) is elapsed. Otherwise, F512 MainsLowVolt is generated.
If the mains voltage returns before PowrDownTime (30.24) is elapsed and the overriding control keeps the commands On (MCW bit 0) and Run (MCW bit 3) = 1, the drive will start again after 2 seconds. Otherwise, the drive trips with F512 MainsLowVolt.
When the mains voltage drops below UNetMin2 (30.23), the action is selected by means of PwrLossTrip (30.21):
6. the drive is immediately tripped with F512 MainsLowVolt or
7. the drive starts up automatically, see description for UNetMin1 (30.22). Below UNetMin2 (30.23) the field acknowledge signals are ignored and blocked

## Notes:

- UNetMin2 (30.23) is not monitored, unless the mains voltage drops below UNetMin1 (30.22). Thus, for proper operation, UNetMin1 (30.22) must be larger than UNetMin2 (30.23).
- If no UPS is available, set PwrLossTrip (30.21) to Immediately. Thus, the drive will trip with F512 MainsLowVolt avoiding secondary phenomena due to missing power for Al's and Dl's.


## Drive behavior during auto-reclosing



## Auto-reclosing

## Mains synchronism

As soon as the main contactor is closed and the firing unit is synchronized with the incoming voltage, supervising of the synchronization is activated. If the synchronization fails, F514 MainsNotSync will be generated.
The synchronization of the firing unit takes typically 300 ms before the current controller is ready.

## Mains overvoltage

The overvoltage level is fixed to 1.3 * NomMainsVolt (99.10). Exceeding this level for more than 10 s and RdyRun = 1 causes F513 MainsOvrVolt.

## Communication loss

The communication to several devices is supervised. Choose the reaction to a communication loss by means of LocalLossCtrl (30.27) or ComLossCtrl (30.28):
Overview local and communication loss:

Device	Loss control	Time out	Related fault	Related alarm
DCS Control Panel	LocalLossCtrl (30.27)	fixed to 5 s	F546 LocalCmdLoss	A130 LocalCmdLoss
DWL				
R-type fieldbus	ComLossCtrl (30.28)	FB TimeOut (30.35)	F528 FieldBusCom	A128 FieldBusCom
SDCS-COM-8		F543 COM8Com	A113 COM8Com	

Overview local and communication loss

## Mains contactor acknowledge

When the drive is switched On (MCW bit 0), the main contactor is closed and waited for its acknowledge. If the acknowledge is not received during 10 seconds after the On command (MCW bit 0 ) is given, the corresponding fault is generated. These are:

1. F523 ExtFanAck, see MotFanAck (10.06)
2. F524 MainContAck, see MainContAck (10.21)

## External fault

The user has the possibility to connect external faults to the drive. The source can be connected to DI's or MainCtrIWord (7.01) and is selectable by ExtFaultSel (30.31). External faults generate F526 ExternalDI. In case inverted fault inputs are needed, it is possible to invert the DI's.

## Bridge reversal

With a 6-pulse converter, the bridge reversal is initiated by changing the polarity of the current reference - see CurRefUsed (3.12). Upon zero current detection - see CurCtrIStat1 (6.03) bit 13 - the bridge reversal is started. Depending on the moment, the new bridge may be "fired" either during the same or during the next current cycle.
The switchover can be delayed by RevDly (43.14). The delay starts after zero current has been detected - see CurCtrIStat1 (6.03) bit 13. Thus, RevDly (43.14) is the length of the forced current gap during a bridge changeover. After the reversal delay is elapsed the system changes to the selected bridge without any further consideration.
This feature may prove useful when operating with large inductances. Also the time needed to change the current direction can be longer when changing from motoring mode to regenerative mode at high motor voltages, because the motor voltage must be reduced before switching to regenerative mode.
After a command to change current direction - see CurRefUsed (3.12) - the opposite current has to be reached before ZeroCurTimeOut (97.19) has been elapsed otherwise the drive trips with F557 ReversalTime [FaultWord4 (9.04) bit 8].
Example:
Drive is tripping with F557 ReversalTime [FaultWord4 (9.04) bit 8]:


Bridge reversal

## Fault tracing

## Analog input monitor

In case the analog input is set to 2 V to 10 V 4 or mA to 20 mA respectively it is possible to check for wire breakage by means of AI Mon $4 m A$ (30.29). In case the threshold is undershooting one of the following actions will take place:

1. the drive stops according to FaultStopMode (30.30) and trips with F551 AIRange
2. the drive continues to run at the last speed and sets A127 AIRange
3. the drive continues to run with FixedSpeed1 (23.02) and sets A127 AIRange

## Motor protection

## Armature overvoltage

The nominal value of the armature voltage is set with M1NomVolt (99.02).
The overvoltage level is set by means of ArmOvrVoltLev (30.08). Exceeding this level causes F503

## ArmOverVolt.

## Measured motor temperature

## General

It is possible to indicate the temperatures of the motor. Alarm and tripping levels are selected by means of M1AlarmLimTemp (31.06) and M1FaultLimTemp (31.07). If the levels are exceeded either A106
M1OverTemp or F506 M1OverTemp is set. The motor fan will continue to work until the motor is cooled down to alarm limit. Configure this supervision by means of M1TempSel (31.05).

## SDCS-CON-F:

The SDCS-CON-F provides a connection possibility for max. 1 PTC via AI2. For jumper settings, see chapter Control board. All parameters for AI2 in group 13 have to set to default.
ATTENTION: PTC must be double isolated against power circuit.


PTC and SDCS-CON-F

## Klixon

It is possible to supervise the temperature of the motor by means of klixons. The klixon is a thermal switch, opening its contact at a defined temperature. Use it for supervision of the temperature by means of connecting the switch to a digital input of the drive. Select the digital input for the klixon(s) with M1KlixonSel (31.08). The drive trips with F506 M1OverTemp when the klixon opens. The motor fan will continue to work until the klixon is closed again.

## Note:

It is possible to connect several klixons in series.

## Motor thermal model

## General

The drive includes a thermal model for the connected motor. It is recommended to use the thermal model of the motor if a direct motor temperature measurement is not available and the current limits of the drive are set higher than the motor nominal current.
The thermal model is based on the actual motor current related to motor nominal current and rated ambient temperature. Thus, the thermal model does not directly calculate the temperature of the motor, but it
calculates the temperature rise of the motor. This is because the motor will reach its end temperature after the specified time when starting to run the cold motor $\left(40^{\circ} \mathrm{C}\right)$ with nominal current. This time is about four times the motor thermal time constant.
The temperature rise of the motor behaves like the time constant which is proportional with the motor current to the power of two:
$\Phi=\frac{I_{\text {act }}^{2}}{I_{\text {Motn }}^{2}} *\left(1-e^{-\frac{t}{\tau}}\right)$
When the motor is cooling down, following temperature model is valid:
$\Phi=\frac{I_{\text {act }}^{2}}{I_{\text {Motn }}^{2}} * e^{-\frac{t}{\tau}}$
with: $\quad \Phi_{\text {alarm }}=$ temperature rise $==[\text { M1AlarmLimLoad }(31.03)]^{2}$
$\Phi_{\text {trip }}=$ temperature rise $==[\text { M1FaultLimLoad (31.04) }]^{2}$
$\Phi=$ temperature rise $==$ Mot1TempCalc (1.20)
$\mathrm{i}_{\text {act }}=$ actual motor current (overload e.g. 170\%)
$\mathrm{i}_{\text {MotN }}=$ nominal motor current (100\%)
$\mathrm{t}=$ length of overload (e.g. 60 s )
$\tau=$ temperature time constant (in seconds) $==$ M1ModelTime (31.01)
As from the formulas (1) and (2) can be seen, the temperature model uses the same time constant when the motor is heating or cooling down.

## Alarm and tripping levels

Alarm and tripping levels are selected by means of M1AlarmLimLoad (31.03) and M1FaultLimLoad (31.04). If the levels are exceeded either A107 M1OverLoad or F507 M1OverLoad is set. The motor fan will continue to work until the motor is cooled down under the alarm limit. The default values are selected in order to achieve quite high overload ability. Recommended value for alarming is $102 \%$ and for tripping $106 \%$ of nominal motor current. Thus the temperature rise is:

- $\Phi_{\text {alarm }}==[\text { M1AlarmLimLoad (31.03) }]^{2}=(102 \%)^{2}=1.02^{2}=1.04$ and
$-\Phi_{\text {trip }}==[\text { M1FaultLimLoad (31.04) }]^{2}=(106 \%)^{2}=1.06^{2}=1.12$.
The temperature rise output of the model is shown in Mot1TempCalc (1.20).


## Thermal model selection

The thermal models is activated by setting M1ModelTime (31.01) greater than zero.

## Thermal time constant

Set the time constant for the thermal model by means of M1ModeITime (31.01). If the thermal time constant of a motor is given by the manufacturer just write it into M1ModelTime (31.01). In many cases, the motor manufacturer provides a curve that defines how long the motor can be overloaded by a certain overload factor. In this case, calculate the proper thermal time constant.
Example:
The drive is designed to trip if the motor current exceeds $170 \%$ of motor nominal current for more than 60 seconds. Selected tripping base level is $106 \%$ of nominal motor current, thus M1FaultLimLoad (31.04) = 106 \%.


Motor load curve
Using formula (1) we can calculate the correct value for $\tau$, when starting with a cold motor.
With:

$$
(31.04)^{2}=\Phi_{\text {trip }}=\frac{I_{\text {act }}^{2}}{I_{\text {Motn }}^{2}} *\left(1-e^{-\frac{t}{\tau}}\right)
$$

Follows:

$$
\tau=-\frac{t}{\ln \left(1-(31.04)^{2} * \frac{I_{\text {Motn }}{ }^{2}}{I_{\text {act }}{ }^{2}}\right)}=-\frac{60 \mathrm{~s}}{\ln \left(1-1.06^{2} * \frac{1.0^{2}}{1.7^{2}}\right)}=122 \mathrm{~s}
$$

Set M1ModelTime (31.01) $=122 \mathrm{~s}$.

## $\mathrm{I}^{2} \mathrm{~T}$-function (reducing armature current)

The drive is equipped with an $I^{2}$ t-function. It uses the ampere value in M1MotNomCur (99.03) as $100 \%$. All current depending values are related to this parameter.
The $I^{2}$ t-function is enabled if M1OvrLoadTime (31.11) and M1RecoveryTime (31.12) are greater than zero and the maximum overload current in M1LoadCurMax (31.10) is greater than $100 \%$.
If M1RecoveryTime (31.12) is set too short compared to M1OvrLoadTime (31.11), A132ParConflict is generated, see also Diagnosis (9.11).
Ensure that M1OvrLoadTime (31.11) and M1RecoveryTime (31.12) fit to the overload capability of motor and drive. This must be taken into account during the engineering of the drive system.


The overload phase is calculated using M1LoadCurMax (31.10) and M1OvrLoadTime (31.11). The recovery phase is calculated using M1RecoveryTime (31.12). In order not to overload the motor, the $I^{2}$ t-areas of overload phase and recovery phase have to be identical:
$\left(I_{a \max }^{2}-I_{a \text { nom }}^{2}\right) *$ overload time $=\left(I_{a \text { nom }}^{2}-I_{a \text { red }}^{2}\right) *$ recovery time
In this case, it is ensured that the mean value of the armature current does not exceed $100 \%$. To calculate the recovery current following formula is used:
$I_{\text {a red }}=\sqrt{I_{\text {a nom }}^{2}-\frac{\text { overload time }}{\text { recovery time }} *\left(I_{a \max }^{2}-I_{a \text { nom }}^{2}\right)}$
With parameters follows:
$I_{\text {a red }}=\sqrt{(100 \%)^{2}-\frac{(31.11)}{(31.12)} *\left[(31.10)^{2}-(100 \%)^{2}\right]}$
After an overload phase, the armature current is automatically reduced / limited to $I_{a}$ red during the recovery phase. The current reduction during the recovery phase is signaled by means of A108 MotCurReduce.
Field overcurrent
The nominal value of the field current is set with M1NomFldCur (99.11).
Set the overcurrent level by means of M1FldOvrCurLev (30.13). Exceeding this level causes F515
M1FexOverCur.

## Armature current ripple

The current control is equipped with a current ripple monitor. This function can detect:

1. a broken fuse or thyristor
2. too high gain (e.g. wrong tuning) of the current controller
3. a broken current transformer (T51, T52)

The current ripple monitor level is set by means of CurRippleLim (30.19). Exceeding this level causes either F517 ArmCurRipple or A117 ArmCurRipple depending on CurRippleSel (30.18).
Current ripple monitor method is based on comparing positive and negative currents of each phase. The calculation is done per thyristor pair:


Current ripple monitor method
CurRipple (1.09) is calculated as abs $\left(I_{1-6}-I_{3-4}\right)+$ abs $\left(I_{1-2}-I_{5-4}\right)+$ abs $\left(I_{3-2}-I_{5-6}\right)$. By low-pass filtering with 200 ms ,
CurRippleFilt (1.10) is generated and compared against CurRippleLim (30.19).


## Current ripple monitor calculation

## Note:

The load influences the error signal CurRippleFilt (1.10).

- Current near discontinuous level will create values of about $300 \%$ * ConvCurActRel (1.15) if a thyristor is not fired.
- High inductive loads will create values of about $90 \%$ * ConvCurActRel (1.15) if a thyristor is not fired.


## Commissioning hint:

It is not possible to pre-calculate clear levels. The current control reacts to unstable current feedback. The load is continuously driving the current if a thyristor is not fired.

## Speed feedback monitor

The speed feedback monitor supervises an attached analog tacho or encoder for proper function by means of measured speed and measured EMF. Above a certain EMF, the measured speed feedback must be above a certain threshold. The sign of the speed measurement must be correct as well:


Speed measurement supervision
The drive reacts according to SpeedFbFItSel (30.17) when:

1. the measured EMF is greater than EMF FbMonLev (30.15) and
2. the measured speed feedback SpeedActEnc (1.03), SpeedActTach (1.05) or SpeedActEnc2 (1.42) is lower than SpeedFbMonLev (30.14).
Example:

- SpeedFbMonLev (30.14) = 15 rpm
- EMF FbMonLev (30.15) = 50 V

The drive trips when the EMF is greater than 50 V while the speed feedback is $\leq 15 \mathrm{rpm}$.


1. the drive is immediately tripped with F522 SpeedFb
2. the speed feedback is switched to EMF and the drive is stopped according to E StopRamp (22.11), then F522 SpeedFb is set
3. the speed feedback is switched to EMF and A125 SpeedFb is set In case of field weakening, the drive is immediately tripped with F522 SpeedFb.

## Stall protection

The stall protection trips the converter with F531 MotorStalled when the motor is in apparent danger of overheating. The rotor is either mechanically stalled or the load is continuously too high. It is possible to adjust the supervision (time, speed and torque). The stall protection trips the drive if:

1. the actual speed is below StallSpeed (30.02) and
2. the actual torque - in percent of MotNomTorque (4.23) - exceeds StallTorq (30.03)
3. for a time longer than programmed in StallTime (30.01).

## Overspeed protection

The motor is protected against overspeed e.g. in a case when the drive is in torque control mode and the load drops unexpected. Set the overspeed level by means of M1OvrSpeed (30.16). Exceeding this level causes F532 MotOverSpeed.

## Field undercurrent

The nominal value of the field current is set with M1NomFldCur (99.11).
Set the minimum field current level by means of M1FldMinTrip (30.12). Undershooting this level causes F541 M1FexLowCur. FldMinTripDly (45.18) delays F541 M1FexLowCur.

## Tacho I pulse encoder polarity

The polarity of the analog tacho or pulse encoder [depending on M1SpeedFbSell (50.03)] is checked against the EMF. A wrong polarity generates F553 TachPolarity.

## Tacho range

An imminent overflow of the AITacho input generates F554 TachoRange. Check for the right connections (X1:1 to X1:4) on the SDCS-CON-F.

## Display of status, fault messages and error codes

## Categories of signals and display options

A seven-segment display ( H 2500 ) is located on the control board SDCS-CON-F and it shows the state of drive:


The seven-segment display shows the messages in code. The letters and numbers of multi-character codes are displayed one after the other for 0.7 seconds at a time. Plain text messages are available on the DCS Control Panel and in the fault logger DWL.


F514 = mains not in synchronism
For evaluation via digital outputs or communication to the overriding control, 16 bit words are available, containing all fault and alarm signals as binary code:

- FaultWord1 (9.01),
- FaultWord2 (9.02),
- FaultWord3 (9.03),
- FaultWord4 (9.04),
- UserFaultWord (9.05),
- AlarmWord1 (9.06),
- AlarmWord2 (9.07),
- AlarmWord3 (9.08) and
- UserAlarmWord (9.09)


## General messages

General messages will only be indicated on the seven-segment display of the SDCS-CON-F.

7-segment   display	Text on DCS Control   Panel and DWL	Definition	Remark
8	not available	firmware is not running	1
.	not available	firmware is running, no faults, no alarms	-
-	not available	indication while loading firmware into SDCS-CON-F	-
d	not available	indication while loading DCS Control Panel texts into SDCS-   CON-F	-
u	not available	DCS Control Panel text now formatting in the flash - don't   switch off	-

## Power-up errors (E)

Power-up errors will only be indicated on the seven-segment display of the SDCS-CON-F. With a power-up error active, it is not possible to start the drive.

7-segment   display	Text on DCS Control   Panel and DWL	Definition	Remark
E01	not available	Checksum fault firmware flash	1,2
E02	not available	SDCS-CON-F ROM memory test error	1,2
E03	not available	SDCS-CON-F RAM memory test error (even addresses)	1,2
E04	not available	SDCS-CON-F RAM memory test error (odd addresses)	1,2
E05	not available	SDCS-CON-F hardware is not compatible, unknown board	1,2
E06	not available	SDCS-CON-F watchdog timeout occurred	1,2

1. Units should be de- and re-energized. If the fault occurs again, check the SDCS-CON-F and SDCS-PIN-F boards and change them if necessary.
2. Power-up errors are only enabled immediately after power on. If a power-up error is indicated during normal operation, the reason is usually caused by EMC. In this case, please check for proper grounding of cables, converter and cabinet.

## Fault signals (F)

To avoid dangerous situations, damage of the motor, the drive or any other material some physical values must not exceed certain limits. Therefore, limit values can be specified for these values by parameter setting which cause an alarm or a fault when the value exceeds the limits (e.g. max. armature voltage, max. converter temperature). Faults can also be caused by situations, which inhibit the drive from normal operation (e.g. blown fuse).
A fault is a condition, which requires an immediate stop of the drive in order to avoid danger or damage. The drive is stopped automatically and cannot be restarted before removing its cause. All fault signals, with the exception of:

- F501 AuxUnderVolt,
- F525 TypeCode,
- F547 HwFailure and
- F548 FwFailure
are resetable in case the fault is eliminated. To reset a fault following steps are required:
- remove the Run and On commands [UsedMCW (7.04) bit 3 and 0]
- eliminate the faults
- acknowledge the fault with Reset [UsedMCW (7.04) bit 7] via digital input, overriding control system or in Local mode with DCS Control Panel or DWL
- depending on the systems condition, generate Run and On commands [UsedMCW (7.04) bit 3 and 0] again
The fault signals will switch the drive off completely or partly depending on its trip level.


## Fault tracing

## Trip level 1:

- main contactor is switched off immediately
- fan contactor is switched off immediately


## Trip level 2:

- main contactor is switched off immediately
- fan contactor stays on as long as the fault is pending or as long as FanDly (21.14) is running


## Trip level 3:

- main contactor is switched off immediately
- fan contactor stays on as long as FanDly (21.14) is running

At standstill the

- main contactor cannot be switched on again


## Trip level 4:

As long as the drive is stopping via FaultStopMode (30.30), the

- main contactor is switched off immediately in case of FaultStopMode (30.30) = CoastStop or DynBraking, but it stays on in case of FaultStopMode (30.30) = RampStop or TorqueLimit
- fan contactor is switched off immediately in case of FaultStopMode (30.30) = CoastStop, but stays on in case of FaultStopMode (30.30) = RampStop, TorqueLimit or DynBraking
At standstill the
- main contactor is switched off immediately
- fan contactor stays on as long as FanDly (21.14) is running


## Trip level 5

As long as the drive is stopping via any com. loss control [LocalLossCtrl (30.27) or ComLossCtrl (30.28)], the

- main contactor is switched off immediately or stays on depending on the selected com. loss control
- fan contactor is switched off immediately or stays on depending on the selected com. loss control

At standstill

- main contactor is switched off immediately
- fan contactor stays on as long as FanDly (21.14) is running

In case a fault occurs, it stays active until the cause is eliminated and a Reset [UsedMCW (7.04) bit 7] is given.

Fault name	Fault number	Fault name	Fault number
AlRange	F551	M1FexLowCur	F541
ArmCurRipple	F517	M1FexOverCur	F515
ArmOverCur	F502	M1OverLoad	F507
ArmOverVolt	F503	M1OverTemp	F506
AuxUnderVolt	F501	MainContAck	F524
		MainsLowVolt	F512
COM8Com	F543	MainsNotSync	F514
COM8Faulty	F540	MainsOvrVolt	F513
	MotorStalled	F531	
ConvOverTemp	F504	MotOverSpeed	F532
ExternalDI	F526	ParComp	F549
ExtFanAck	F523	ParMemRead	F550
		ReversalTime	F557
FieldBusCom	F528		
FwFailure	F548	SpeedFb	F522
HwFailure	F547	TachPolarity	F553
		TachoRange	F554
I/OBoardLoss	F508	TypeCode	F525
LocalCmdLoss	F546		

For additional fault messages, see SysFaultWord (9.10).

$\begin{gathered} 7-\text { segment } \\ \text { display } \end{gathered}$	Text on DCS Control Panel and DWL	Definition / Action	Faultword	Fault is active when	或
F501	$\begin{aligned} & 501 \\ & \text { AuxUnderVolt } \end{aligned}$	Auxiliary undervoltage:   The auxiliary voltage is too low while the drive is in operation. If resetting fails, check:   internal auxiliary voltages (SDCS-CON-F)   change SDCS-CON-F and / or SDCS-PIN-F	$\begin{aligned} & 9.01, \\ & \text { bit } 0 \end{aligned}$	RdyRun = 1	1
F502	502 ArmOverCur	Armature overcurrent:   Check:   ArmOvrCurLev (30.09)   parameter settings of group 43 (current control:   armature current controller tuning)   current and torque limitation in group 20   all connections in the armature circuit, especially the incoming voltage for synchronizing. If the synchronizing voltage is not taken from the mains (e.g. via synchronizing transformer or $230 \mathrm{~V} / 115 \mathrm{~V}$ network) check that there is no phase shift between the same phases (use an oscilloscope).   for faulty thyristors   armature cabling   if TypeCode (97.01) is set properly	$\begin{aligned} & 9.01, \\ & \text { bit } 1 \end{aligned}$	always	3
F503	503 ArmOverVolt	Armature overvoltage (DC):   Check:   if setting of ArmOvrVoltLev (30.08) is suitable for the system   parameter settings of group 44 (field excitation: field current controller tuning, EMF controller tuning, flux linearization)   too high field current (e.g. problems with field weakening)   if the motor was accelerated by the load,   overspeed   does the speed scaling fit, see SpeedScaleAct (2.29)   proper armature voltage feedback   connector X12 and X13 on SDCS-CON-F   connector X12 and X13 on SDCS-PIN-F	$\begin{aligned} & 9.01, \\ & \text { bit } 2 \end{aligned}$	always	1
F504	504 ConvOverTemp	Converter overtemperature:   Wait until the converter is cooled down. Shutdown temperature see MaxBridgeTemp (4.17). Check:   - converter cover missing   - converter fan supply voltage   - converter fan direction of rotation   - converter fan components   - converter cooling air inlet (e.g. filter)   - converter cooling air outlet   - ambient temperature   - inadmissible load cycle	$\begin{aligned} & 9.01, \\ & \text { bit } 3 \end{aligned}$	always	2

Fault tracing

$\begin{gathered} \text { 7-segment } \\ \text { display } \end{gathered}$	Text on DCS Control Panel and DWL	Definition / Action	Faultword	Fault is active when	
		connector X12 on SDCS-CON-F   connector X12 and X22 on SDCS-PIN-F   if TypeCode (97.01) and S MaxBridgeTemp (97.04) are set properly			
F506	506 M1OverTemp	Motor measured overtemperature:   Wait until the motor is cooled down. The motor fan will continue to work until the motor is cooled down under the alarm level. It is not possible to reset the fault as long as the motor remains too hot. Check:   - M1FaultLimTemp (31.07), M1KlixonSel (31.08)   - M1AlarmLimTemp (31.08)   motor temperature   motor fan supply voltage   motor fan direction of rotation   motor fan components   motor cooling air inlet (e.g. filter)   motor cooling air outlet   motor temperature sensors and cabling   ambient temperature   inadmissible load cycle   inputs for temperature sensor on SDCS-CON-F	$\begin{aligned} & 9.01, \\ & \text { bit } 5 \end{aligned}$	always	2
F507	507 M1OverLoad	Motor calculated overload:   Wait until the motor is cooled down. The motor fan will continue to work until the motor is calculated down under the alarm level. It is not possible to reset the fault as long as the motor remains too hot. Check:   - M1FaultLimLoad (31.04)   - M1AlarmLimLoad (31.03)	$\begin{aligned} & 9.01, \\ & \text { bit } 6 \end{aligned}$	always	2
F508	508 I/OBoardLoss	I/O board not found or faulty:   Check:   - Diagnosis (9.11)   - Ext IO Status (4.20)   - SDCS-COM-8   - CommModule (98.02), DIO ExtModule1 (98.03), DIO ExtModule2 (98.04), AIO ExtModule (98.06)	$\begin{aligned} & 9.01, \\ & \text { bit } 7 \end{aligned}$	always	1
F512	$\begin{array}{\|l\|} \hline 512 \\ \text { MainsLowVolt } \end{array}$	Mains low (under-) voltage (AC):   Check:   PwrLossTrip (30.21), UNetMin1 (30.22), UNetMin2   (30.23), PowrDownTime (30.24)   if all 3 phases are present:   measure the fuses F100 to F102 on the SDCS-PIN-F)   if the mains voltage is within the set tolerance   if the main contactor closes and opens   if the mains voltage scaling is correct [NomMainsVolt (99.10)]   connector X12 and X13 on SDCS-CON-F   connector X12 and X13 on SDCS-PIN-F   check if the field circuit has no short circuit or ground fault	$\begin{aligned} & 9.01, \\ & \text { bit } 11 \end{aligned}$	RdyRun = 1	3
F513	513 MainsOvrVolt	Mains overvoltage (AC):	9.01,	RdyRun = 1	1


7-segment display	Text on DCS Control Panel and DWL	Definition / Action	Faultword	Fault is active when	遃
		Actual mains voltage is >1.3 * NomMainsVolt (99.10) for more than 10 s and RdyRun $=1$. Check:   if the mains voltage is within the set tolerance   if the mains voltage scaling is correct [NomMainsVolt (99.10)]   connector X12 and X13 on SDCS-CON-F   connector X12 and X13 on SDCS-PIN-F	bit 12		
F514	514 MainsNotSync	Mains not in synchronism (AC):   The synchronization with the mains frequency has been lost. Check:   mains supply   fuses etc.   mains frequency ( $50 \mathrm{~Hz} \pm 5 \mathrm{~Hz} ; 60 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$ ) and stability (df/dt $=17 \% / \mathrm{s}$ ) see PLLIn (3.20) at 50 Hz one period $==360^{\circ}=20 \mathrm{~ms}=20,000$ and at 60 Hz one period $==360^{\circ}==16.7 \mathrm{~ms}=16,6667$	$\begin{aligned} & 9.01, \\ & \text { bit } 13 \end{aligned}$	RdyRun = 1	3
F515	$\begin{aligned} & \text { 515 } \\ & \text { M1FexOverCur } \end{aligned}$	Field exciter overcurrent:   Check:   in case this fault happens during field exciter   autotuning deactivate the supervision by setting   M1FldOvrCurLev (30.13) $=135$   M1FIdOvrCurLev (30.13)   parameter settings of group 44 (field excitation: field current controller tuning)   connections of field exciter   insulation of cables and field winding   resistance of field winding	$\begin{aligned} & 9.01, \\ & \text { bit } 14 \end{aligned}$	RdyRun = 1	1
F517	$\begin{aligned} & \text { 517 } \\ & \text { ArmCurRipple } \end{aligned}$	Armature current ripple:   One or several thyristors may carry no current. Check:   CurRippleSel (30.18), CurRippleLim (30.19)   for too high gain of current controller [M1KpArmCur (43.06)]   current feedback with oscilloscope ( 6 pulses within one cycle visible?)   thyristor gate-cathode resistance   thyristor gate connection	$\begin{aligned} & 9.02, \\ & \text { bit } 0 \end{aligned}$	RdyRef = 1	3
F522	522 SpeedFb	Speed feedback:   The comparison of the speed feedback from pulse encoder or analog tacho has failed. Check:   M1SpeedFbSel (50.03), SpeedFbFItMode (30.36),   SpeedFbFItSel (30.17), EMF FbMonLev (30.15),   SpeedFbMonLev (30.14)   pulse encoder: encoder itself, alignment, cabling, coupling, power supply (feedback might be too low), mechanical disturbances, jumper S4 on SDCS-CON-F analog tacho: tacho itself, tacho polarity and voltage, alignment, cabling, coupling, mechanical disturbances, jumper S1 on SDCS-CON-F   EMF: connection converter - armature circuit closed   - SDCS-CON-F	$\begin{aligned} & 9.02, \\ & \text { bit } 5 \end{aligned}$	always	3
F523	523 ExtFanAck	External fan acknowledge missing:	9.02,	RdyRun = 1	

Fault tracing

$\begin{gathered} 7 \text {-segment } \\ \text { display } \end{gathered}$	Text on DCS Control Panel and DWL	Definition / Action	Faultword	Fault is active when	
		Check:   - MotFanAck (10.06)   external fan contactor   external fan circuit   external fan supply voltage   used digital inputs and outputs (group 14)	bit 6		
F524	524 MainContAck	Main contactor acknowledge missing:   Check:   - MainContAck (10.21)   - switch on - off sequence   - auxiliary contactor (relay) switching the main contactor after On/Off command   safety relays   - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.02, \\ & \text { bit } 7 \end{aligned}$	RdyRun = 1	3
F525	525 TypeCode	Type code mismatch: Check:   - TypeCode (97.01)	$\begin{aligned} & 9.02, \\ & \text { bit } 8 \end{aligned}$	always	1
F526	526 ExternalDI	External fault via binary input: There is no problem with the drive itself! Check: ExtFaultSel (30.31)	$\begin{aligned} & 9.02, \\ & \text { bit } 9 \end{aligned}$	Always or RdyRun = 1	1
F528	528 FieldBusCom	Fieldbus communication loss:   F528 FieldBusCom is only activated after the first data set from the overriding control is received by the drive.   Before the first data set is received, only A128   FieldBusCom is active. The reason is to suppress unnecessary faults (the start up of the overriding control is usually slower than the one of the drive). Check:   CommandSel (10.01), ComLossCtrl (30.28), FB   TimeOut (30.35), CommModule (98.02)   parameter settings of group 51 (fieldbus)   fieldbus cable   fieldbus termination   fieldbus adapter	$\begin{aligned} & 9.02, \\ & \text { bit } 11 \end{aligned}$	always if $F B$ TimeOut $(30.35) \neq 0$	5
F531	531 MotorStalled	Motor stalled:   The motor torque exceeded StallTorq (30.03) for a time longer than StallTime (30.01) while the speed feedback was below StallSpeed (30.02). Check:   motor stalled (mechanical couplings of the motor)   proper conditions of load   correct field current   parameter settings of group 20 (limits: current and torque limits)	$\begin{aligned} & 9.02, \\ & \text { bit } 14 \end{aligned}$	RdyRef = 1	3
F532	$\begin{aligned} & 532 \\ & \text { MotOverSpeed } \end{aligned}$	Motor overspeed:   Check:   M1OvrSpeed (30.16)   parameter settings of group 24 (speed control: speed controller)   scaling of speed controller loop [SpeedScaleAct (2.29)] drive speed [MotSpeed (1.04)] vs. measured motor speed (hand held tacho)   field current too low	$\begin{aligned} & 9.02, \\ & \text { bit } 15 \end{aligned}$	always	3


7-segment display	Text on DCS Control Panel and DWL	Definition / Action	Faultword	Fault is active when	彦
		- speed feedback (encoder, tacho)   connection of speed feedback   if the motor was accelerated by the load   the armature circuit is open (e.g. DC-fuses, DCbreaker)			
F540	540 COM8Faulty	SDCS-COM-8 faulty:   Check:   Change SDCS-COM-8 and / or SDCS-CON-F	$\begin{aligned} & 9.03, \\ & \text { bit } 7 \end{aligned}$	RdyOn = 1	1
F541	541   M1FexLowCur	Field exciter low (under-) current:   Check:   M1FldMinTrip (30.12) , FldMinTripDly (45.18)   parameter settings of group 44 (field excitation: field current controller tuning, EMF controller tuning, flux linearization)   motor name plate for minimum current at maximum field weakening (maximum speed)   field circuit fuses   if the field current oscillates   if the motor is not compensated and has a high armature reaction	$\begin{aligned} & 9.03, \\ & \text { bit } 8 \end{aligned}$	always	1
F543	543 COM8Com	SDCS-COM-8 com. loss:   Check:   Change SDCS-COM-8 and / or SDCS-CON-F	$\begin{aligned} & 9.03, \\ & \text { bit } 10 \end{aligned}$	RdyOn = 1	5
F546	$\begin{aligned} & 546 \\ & \text { LocalCmdLoss } \end{aligned}$	Local command loss:   Com. fault with DCS Control Panel, DWL during local mode. Check:   - LocalLossCtrl (30.27)   if control DCS Control Panel is disconnected   connection adapter   cables	$\begin{aligned} & 9.03, \\ & \text { bit } 13 \end{aligned}$	local	5
F547	547 HwFailure	Hardware failure:   For more details, check Diagnosis (9.11).	$\begin{aligned} & 9.03, \\ & \text { bit } 14 \end{aligned}$	always	1
F548	548 FwFailure	Firmware failure:   For more details, check Diagnosis (9.11).	$\begin{aligned} & 9.03, \\ & \text { bit } 15 \end{aligned}$	always	1
F549	549 ParComp	Parameter compatibility:   When downloading parameter sets or during power-up the firmware attempts to write their values. If the setting is not possible or not compatible, the parameter is set to default. The parameters causing the fault can be identified in Diagnosis (9.11). Check: parameter setting	$\begin{aligned} & 9.04, \\ & \text { bit } 0 \end{aligned}$	always	1
F550	550   ParMemRead	Parameter read:   Reading the actual parameter set or a user parameter set from either flash or Memory Card failed (checksum fault). Check:   one or both parameter sets (User1 and / or User2) have not been saved properly - see ApplMacro (99.08) SDCS-CON-F	$\begin{aligned} & 9.04, \\ & \text { bit } 1 \end{aligned}$	always	1
F551	551 AIRange	Analog input range:   Undershoot of one of the analog input values under $4 \mathrm{~mA} /$	$\begin{aligned} & 9.04, \\ & \text { bit } 2 \end{aligned}$	always	4

## Fault tracing

	Text on DCS Control Panel and DWL	Definition / Action	Faultword	Fault is active when	
		2V. Check:   - AI Mon4mA (30.29)   - used analog inputs connections and cables   - polarity of connection			
F553	553 TachPolarity	Tacho polarity:   The polarity of the analog tacho respectively pulse encoder [depending on M1SpeedFbSell (50.03)] is checked against the EMF. Check: ```- EMF FbMonLev (30.15), SpeedFbMonLev (30.14) polarity of tacho cable polarity of pulse encoder cable (e.g. swap channels A and A not) polarity of armature and field cables direction of motor rotation```	$\begin{aligned} & 9.04, \\ & \text { bit } 4 \end{aligned}$	always	3
F554	554 TachoRange	```Tacho range: Overflow of AlTacho input. Check: for the right connections ( \(\mathrm{X} 1: 1\) to \(\mathrm{X} 1: 4\) ) on the SDCS- CON-F```	$\begin{aligned} & 9.04, \\ & \text { bit } 5 \end{aligned}$	always	3
F557	557 ReversalTime	Reversal time:   Current direction not changed before ZeroCurTimeOut   (97.19) is elapsed. Check:   for high inductive motor   too high motor voltage compared to mains voltage   - lower RevDly (43.14) if possible and   - increase ZeroCurTimeOut (97.19)	$\begin{aligned} & 9.04, \\ & \text { bit } 8 \end{aligned}$	RdyRef $=1$	3
F601	601 APFault1	User defined fault by AP	$\begin{aligned} & 9.04, \\ & \text { bit } 11 \end{aligned}$	always	1
F602	602 APFault2	User defined fault by AP	$\begin{aligned} & 9.04, \\ & \text { bit } 12 \end{aligned}$	always	1
F603	603 APFault3	User defined fault by AP	$\begin{aligned} & 9.04, \\ & \text { bit } 13 \\ & \hline \end{aligned}$	always	1
F604	604 APFault4	User defined fault by AP	$\begin{aligned} & 9.04, \\ & \text { bit } 14 \end{aligned}$	always	1
F605	605 APFault5	User defined fault by AP	$\begin{aligned} & 9.04, \\ & \text { bit } 15 \end{aligned}$	always	1

## Alarm signals (A)

An alarm is a message, that a condition occurred, which may lead to a dangerous situation. It is displayed and written into the fault logger. However, the cause for the alarm can inhibit the drive from continuing with normal operation. If the cause of the alarm disappears, the alarm will be automatically reset. The fault logger shows the appearing alarm (A1xx) with a plus sign and the disappearing alarm (A2xx) with a minus sign. An appearing user defined alarm is indicated as A3xx. A disappearing user defined alarm is indicated as A4xx. The alarm handling must provides 4 alarm levels.

## Alarm level 1:

- the drive keeps on running and the alarm is indicated
- after the drive is stopped, the main contactor cannot be switched on again (no re-start possible)


## Alarm level 2:

- the drive keeps on running and the alarm is indicated
- fan contactor stays on as long as the alarm is pending
- if the alarm disappears FanDly (21.14) will start


## Alarm level 3:

- AutoReclosing (auto re-start) is [AuxStatWord (8.02) bit 15] active
- RdyRun [MainStatWord (8.01) bit 1] is disabled, but the drive is automatically restarted when the alarm condition vanishes
- $\alpha$ is set to $150^{\circ}$
- single firing pulses


## Alarm level 4:

the drive keeps on running and the alarm is indicated In case an alarm occurs, it stays active until the cause is eliminated. Then the alarm will automatically disappear, thus a Reset [UsedMCW (7.04) bit 7] is not needed and will have no effect.

Alarm name	Alarm numbe appearing	disappearing	Alarm name	Alarm numbe appearing	disappearing
AlRange	A127	A227	MainsLowVolt	A111	A211
ArmCurDev	A114	A214	MotCurReduce	A108	A208
ArmCurRipple	A117	A217			
AutotuneFail	A121	A221	NoAPTaskTime	A136	A236
COM8Com	A113	A213	Off2FieldBus	A138	A238
COM8FwVer	A141	A241	Off2ViaDI	A101	A201
ConvOverTemp	A104	A204	Off3FieldBus	A139	A239
			Off3ViaDI	A102	A202
DC BreakAck	A103	A203			
DynBrakeAck	A105	A205	ParAdded	A131	A231
			ParComp	A134	A234
ExternalDI	A126	A226	ParConflict	A132	A232
			ParRestored	A129	A229
FaultSuppres	A123	A223	ParUpDwnLoad	A135	A235
FieldBusCom	A128	A228			
			Retainlnv	A133	A233
IllgFieldBus	A140	A240			
			SpeedFb	A125	A225
LocalCmdLoss	A130	A230	SpeedNotZero	A137	A237
			SpeedScale	A124	A224
M1OverLoad	A107	A207			
M1OverTemp	A106	A206	TachoRange	A115	A215

Fault tracing

$\begin{gathered} 7 \text {-segment } \\ \text { display } \end{gathered}$	Text on DCS Control Panel and DWL	Definition / Action	$\begin{gathered} \text { Alarm- } \\ \text { word } \end{gathered}$	Alarm is active when	
A101	101 Off2ViaDI	Off2 (Emergency Off / Coast stop) pending via digital input - start inhibition:   There is no problem with the drive itself! Check:   - Off2 (10.08), if necessary invert the signal (group 10)	$\begin{aligned} & 9.06, \\ & \text { bit } 0 \end{aligned}$	RdyRun = 1	1
A102	102 Off3ViaDI	Off3 (E-stop) pending via digital input:   There is no problem with the drive itself! Check:   - E Stop (10.09), if necessary invert the signal (group 10)	$\begin{aligned} & 9.06, \\ & \text { bit } 1 \end{aligned}$	RdyRun = 1	1
A103	103 DC BreakAck	DC-Breaker acknowledge missing:   $\alpha$ is set to $150^{\circ}$ and single firing pulses are given, thus the drive cannot be started or re-started while the DC-breaker acknowledge is missing. Check:   DC BreakAck (10.23), if necessary invert the signal (group 10)	$9.06,$	RdyRun = 1	3
A104	104 ConvOverTemp	Converter overtemperature:   Wait until the converter is cooled down. Shutdown temperature see MaxBridgeTemp (4.17). The converter overtemperature alarm will already appear at approximately $5^{\circ} \mathrm{C}$ below the shutdown temperature. Check:   - FanDly (21.14)   converter cover missing   converter fan supply voltage   converter fan direction of rotation   converter fan components   converter cooling air inlet (e.g. filter)   converter cooling air outlet   ambient temperature   inadmissible load cycle   connector X12 on SDCS-CON-F   connector X12 and X22 on SDCS-PIN-F   if TypeCode (97.01) and S MaxBridgeTemp (97.04)   are set properly	$\begin{aligned} & 9.06, \\ & \text { bit } 3 \end{aligned}$	always	2
A105	105 DynBrakeAck	Dynamic braking is still pending:   $\alpha$ is set to $150^{\circ}$ and single firing pulses are given, thus the drive cannot be started or re-started while dynamic braking is active, except if FlyStart (21.10) = FlyStartDyn. Check:   - DynBrakeAck (10.22)   - FlyStart (21.10)	$9.06,$	RdyRun = 1	3
A106	106 M1OverTemp	Motor measured overtemperature: Check:   - M1AlarmLimTemp (31.06)   motor temperature   motor fan supply voltage   motor fan direction of rotation   motor fan components   motor cooling air inlet (e.g. filter)   motor cooling air outlet   motor temperature sensors and cabling	$\begin{aligned} & 9.06, \\ & \text { bit } 5 \end{aligned}$	always	2


$\begin{gathered} 7 \text {-segment } \\ \text { display } \end{gathered}$	Text on DCS Control Panel and DWL	Definition / Action	Alarmword	Alarm is active when	
		- ambient temperature   inadmissible load cycle   inputs for temperature sensor on SDCS-CON-F			
A107	107 M1OverLoad	Motor calculated overload: Check:   M1AlarmLimLoad (31.03)	$\begin{aligned} & 9.06, \\ & \text { bit } 6 \end{aligned}$	always	2
A108	$\begin{aligned} & 108 \\ & \text { MotCurReduce } \end{aligned}$	Motor current reduced:   Is shown, when the $\mathrm{I}^{2} \mathrm{~T}$-function is active and the motor current is reduced. Check:   M1LoadCurMax (31.10), M1OvrLoadTime (31.11) and M1RecoveryTime (31.12)	$\begin{aligned} & 9.06, \\ & \text { bit } 7 \end{aligned}$	always	4
A111	$111$   MainsLowVolt	```Mains low (under-) voltage (AC): \alpha is set to 150 PwrLossTrip (30.21), UNetMin1 (30.22), UNetMin2 (30.23), If all 3 phases are present if the mains voltage is within the set tolerance if the main contactor closes and opens if the mains voltage scaling is correct [NomMainsVolt (99.10)] connector X12 and X13 on SDCS-CON-F connector X12 and X13 on SDCS-PIN-F```	$\begin{aligned} & 9.06, \\ & \text { bit } 10 \end{aligned}$	RdyRun = 1	3
A113	113 COM8Com	SDCS-COM-8 com. loss:   Check:   Change SDCS-COM-8 and / or SDCS-CON-F	$\begin{aligned} & 9.06, \\ & \text { bit } 12 \end{aligned}$	always	4
A114	114 ArmCurDev	Armature Current Deviation:   Is shown, if the current reference [CurRefUsed (3.12)] differs from current actual [MotCur (1.06)] for longer than 5 sec by more than $20 \%$ of nominal motor current. In other words if the current controller cannot match the given reference, the alarm signal is created. Normally the reason is a too small incoming voltage compared to the motor EMF. Check:   - DC fuses blown ratio between mains voltage and armature voltage (either the mains voltage is too low or the motor's armature voltage is too high)   ArmAlphaMin (20.15) is set too high	$\begin{aligned} & 9.06, \\ & \text { bit } 13 \end{aligned}$	RdyRef = 1	4
A115	115 TachoRange	Tacho range:   If A115 TachoRange comes up for longer than 10 seconds, there is an overflow of the AITacho input. Check: for the right connections ( $\mathrm{X} 1: 1$ to $\mathrm{X} 1: 4$ ) on the SDCS-CON-F   If A115 TachoRange comes up for 10 seconds and vanishes again M1OvrSpeed (30.16) has been changed. In this case a new tacho fine tuning has to be done [ServiceMode (99.06) = TachFineTune].	$\begin{aligned} & 9.06, \\ & \text { bit } 14 \end{aligned}$	always	4
A117	117   ArmCurRipple	Armature current ripple:   One or several thyristors may carry no current. Check:   - CurRippleSel (30.18), CurRippleLim (30.19)   - for too high gain of current controller [M1KpArmCur	$\begin{aligned} & 9.07, \\ & \text { bit } 0 \end{aligned}$	RdyRef = 1	4

Fault tracing

$\begin{gathered} 7-\text { segment } \\ \text { display } \end{gathered}$	Text on DCS Control Panel and DWL	Definition / Action	$\begin{aligned} & \text { Alarm- } \\ & \text { word } \end{aligned}$	Alarm is active when	
		(43.06)]   current feedback with oscilloscope (6 pulses within one cycle visible?)   thyristor gate-cathode resistance   thyristor gate connection			
A121	121 AutotuneFail	Autotuning failed:   For more details, check Diagnosis (9.11). To clear the alarm set ServiceMode (99.06) = NormalMode or WinderTuning (61.21) = NotUsed	$\begin{aligned} & 9.07, \\ & \text { bit } 4 \end{aligned}$	always	4
A123	123 FaultSuppres	Fault suppressed:   At least one fault message is currently active and suppressed.	$\begin{aligned} & 9.07, \\ & \text { bit } 6 \end{aligned}$	always	4
A124	124 SpeedScale	Speed scaling out of range:   The parameters causing the alarm can be identified in Diagnosis (9.11). $\alpha$ is set to $150^{\circ}$; single firing pulses. Check:   M1SpeedMin (20.01), M1SpeedMax (20.02),   M1SpeedScale (50.01), M1BaseSpeed (99.04)	$\begin{aligned} & 9.07, \\ & \text { bit } 7 \end{aligned}$	always	3
A125	125 SpeedFb	Speed feedback:   The comparison of the speed feedback from pulse encoder or analog tacho has failed. Check:   M1SpeedFbSel (50.03), SpeedFbFItMode (30.36),   SpeedFbFltSel (30.17), EMF FbMonLev (30.15),   SpeedFbMonLev (30.14)   pulse encoder: encoder itself, alignment, cabling, coupling, power supply (feedback might be too low), mechanical disturbances jumper S4 on SDCS-CON-F analog tacho: tacho itself, tacho polarity and voltage, alignment, cabling, coupling, mechanical disturbances, jumper S1 on SDCS-CON-F   EMF: connection converter - armature circuit closed   - SDCS-CON-F	$\begin{aligned} & 9.07, \\ & \text { bit } 8 \end{aligned}$	always	4
A126	126 ExternalDI	External alarm via binary input:   There is no problem with the drive itself! Check:   - ExtAlarmSel (30.32), alarm $=0$, ExtAlarmOnSel (30.34)	$\begin{aligned} & 9.07, \\ & \text { bit } 9 \end{aligned}$	always	4
A127	127 AIRange	Analog input range:   Undershoot of one of the analog input values under 4mA /   2V. Check:   - AI Mon4mA (30.29)   - used analog inputs connections and cables   - polarity of connection	$\begin{aligned} & 9.07, \\ & \text { bit } 10 \end{aligned}$	always	4
A128	128 FieldBusCom	Fieldbus communication loss:   F528 FieldBusCom is only activated after the first data set from the overriding control is received by the drive.   Before the first data set is received, only A128   FieldBusCom is active. The reason is to suppress unnecessary faults (the start up of the overriding control is usually slower than the one of the drive). Check:   ComLossCtrl (30.28), FB TimeOut (30.35),   CommModule (98.02)	$\begin{aligned} & 9.07, \\ & \text { bit } 11 \end{aligned}$	always if $F B$ TimeOut $(30.35) \neq 0$	4


7-segment display	Text on DCS Control Panel and DWL	Definition / Action	Alarmword	Alarm is active when	
		parameter settings of group 51 (fieldbus)   fieldbus cable   fieldbus termination   fieldbus adapter			
A129	129 ParRestored	Parameter restored:   The parameters found in the flash were invalid at powerup (checksum fault). All parameters were restored from the parameter backup.	$\begin{aligned} & 9.07, \\ & \text { bit } 12 \end{aligned}$	always	4
A130	$\begin{aligned} & 130 \\ & \text { LocalCmdLoss } \end{aligned}$	Local command loss:   Connection fault with DCS Control Panel or DWL. Check:   - LocalLossCtrl (30.27)   - if control DCS Control Panel is disconnected   - connection adapter   - cables	$\begin{aligned} & 9.07 \\ & \text { bit } 13 \end{aligned}$	local	4
A131	131 ParAdded	Parameter added:   A new firmware with a different amount of parameters was downloaded. The new parameters are set to their default values. The parameters causing the alarm can be identified in Diagnosis (9.11). Check: new parameters and set them to the desired values	$\begin{aligned} & 9.07 \\ & \text { bit } 14 \end{aligned}$	after download of firmware for max. 10 s	4
A132	132 ParConflict	Parameter setting conflict: Is triggered by parameter settings conflicting with other parameters. The parameters causing the alarm can be identified in Diagnosis (9.11).	$\begin{aligned} & 9.07, \\ & \text { bit } 15 \end{aligned}$	always	4
A133	133 RetainInv	Retain data invalid:   Set when the retain data in the flash are invalid during power-up. In this case, the backup data are used.   Note:   The backup of the lost retain data reflects the status at the previous power-up.   Examples for retain data are:   - fault logger data,   - Data1 (19.01) to Data4 (19.04) and   - I/O options (see group 98)   The situation of invalid retain data occurs, if the auxiliary voltage of the DCS550 is switched off about 2 seconds after power-up (while the retain data sector is being rearranged). Check:   if the flash of the SDCS-CON-F is defective and   if the auxiliary power supply has a problem	$\begin{aligned} & 9.08, \\ & \text { bit } 0 \end{aligned}$	directly after energizing of electronics for max. 10 s	4
A134	134 ParComp	Parameter compatibility:   When downloading parameter sets or during power-up the firmware attempts to write the parameters. If the setting is not possible or not compatible, the parameter is set to default. The parameters causing the alarm can be identified in Diagnosis (9.11). Check: parameter setting	$9.08,$   bit 1	after download of a parameter set for max. 10 s	
A135	$\left\lvert\, \begin{aligned} & 135 \\ & \text { ParUpDwnLoad } \end{aligned}\right.$	Parameter up- or download failed:   The checksum verification failed during up- or download of parameters. Please try again. Two or more parameter set actions were requested at the same time. Please try	$\begin{aligned} & 9.08, \\ & \text { fbit } 2 \end{aligned}$	after up- or download of parameters for max. 10 s	4

Fault tracing

$\begin{gathered} 7 \text {-segment } \\ \text { display } \end{gathered}$	Text on DCS Control Panel and DWL	Definition / Action	$\begin{gathered} \text { Alarm- } \\ \text { word } \end{gathered}$	Alarm is active when	
		again.			
A136	$\begin{aligned} & 136 \\ & \text { NoAPTaskTime } \end{aligned}$	AP task time not set:   AP task time is not set, while AP is started. Check:   that TimeLevSel (83.04) is set to $\mathbf{5} \mathbf{~ m s}, \mathbf{2 0} \mathbf{~ m s}, \mathbf{1 0 0} \mathbf{~ m s}$ or $\mathbf{5 0 0} \mathbf{~ m s}$ when AdapProgCmd (83.01) is set to Start, SingleCycle or SingleStep	$\begin{aligned} & 9.08, \\ & \text { bit } 3 \end{aligned}$	always	4
A137	137   SpeedNotZero	Speed not zero:   Re-start of drive is not possible. Speed zero [see M1ZeroSpeedLim (20.03)] has not been reached. In case of an alarm set $\mathbf{O n}=\mathbf{R u n}=0$ and check if the actual speed is within the zero speed limit.   This alarm is valid for:   - normal stop, Off1N [UsedMCW (7.04) bit 0] in case FlyStart (21.10) = StartFrom0,   - Coast Stop, Off2N [UsedMCW (7.04) bit 1],   - E-stop, Off3N [UsedMCW (7.04) bit 2] and   - if the drive is de-energized and then re-energized.   Check:   - M1ZeroSpeedLim (20.03)   - FlyStart (21.10)   - M1SpeedFbSel (50.03)   - for proper function of the used speed feedback devices (analog tacho / encoder)	$\begin{aligned} & 9.08, \\ & \text { bit } 4 \end{aligned}$	Not active if RdyRef = 1	1
A138	138 Off2FieldBus	Off2 (Emergency Off / Coast Stop) pending via MainCtrIWord (7.01) I fieldbus - start inhibition: There is no problem with the drive itself! Check:   - MainCtrIWord (7.01) bit1 Off2N	$\begin{aligned} & 9.08, \\ & \text { bit } 5 \end{aligned}$	RdyRun = 1	1
A139	139 Off3FieldBus	Off3 (E-stop) pending via MainCtrIWord (7.01) I fieldbus:   There is no problem with the drive itself! Check:   - MainCtrIWord (7.01) bit2 Off3N	$\begin{aligned} & 9.08, \\ & \text { bit } 6 \end{aligned}$	RdyRun = 1	1
A140	140 IllgFieldBus	IIlegal fieldbus settings:   The fieldbus parameters in group 51 (fieldbus) are not set according to the fieldbus adapter or the device has not been selected. Check:   - group 51 (fieldbus)   - configuration of fieldbus adapter	$\begin{aligned} & 9.08, \\ & \text { bit } 7 \end{aligned}$	always	4
A141	141 COM8FwVer	SDCS-COM-8 firmware version conflict:   Invalid combination of SDCS-CON-F firmware and SDCS-COM-8 firmware. Check:   for valid combination of SDCS-CON-F [FirmwareVer (4.01)] and SDCS-COM-8 [Com8SwVersion (4.11)] firmware version according to the release notes	$\begin{aligned} & 9.08, \\ & \text { bit } 8 \end{aligned}$	always	4
A2xx	2xx <alarm name>	Disappearing system alarm	-		
A301	301 APAlarm1	User defined alarm by AP	$\begin{aligned} & 9.08, \\ & \text { bit } 11 \end{aligned}$	always	4
A302	302 APAlarm2	User defined alarm by AP	$\begin{aligned} & 9.08, \\ & \text { bit } 12 \end{aligned}$	always	4
A303	303 APAlarm3	User defined alarm by AP	$\begin{aligned} & 9.08, \\ & \text { bit } 13 \end{aligned}$	always	4

Fault tracing

-segment   display	Text on DCS   Control Panel   and DWL	Definition / Action	Alarm-   word	Alarm is   active when	
A304	304 APAlarm4	User defined alarm by AP	9.08,   bit 14	always	4
A305	305 APAlarm5	User defined alarm by AP	9.08,   bit 15	always	4
A4xx	$4 x x$ UserAlarmxx	Disappearing user alarm	-	-	

## Notices

A notice is a message to inform the user about a specific occurrence which happened to the drive.

Text on DCS Control Panel	Definition / Action
718 PowerUp	Energize electronics:   The auxiliary voltage for the drives electronics is switched on
719 FaultReset	Reset:   Reset of all faults which can be acknowledged
801 APNotice 1	User defined notice by AP
802 APNotice2	User defined notice by AP
803 APNotice3	User defined notice by AP
804 APNotice4	User defined notice by AP
805 APNotice5	User defined notice by AP
ParNoCyc	Cyclic parameters:   A non-cyclical parameter is written to (e.g. the overriding control writes cyclical on a non-cyclical parameter). The parameters causing the notice can be identified in Diagnosis (9.11).
PrgInvMode	AP not in Edit mode:   Push or Delete action while AP is not in Edit mode. Check:   - EditCmd (83.02)   - AdapProgCmd (83.01)
PrgFault	AP faulty:   AP faulty. Check:   - FaultedPar (84.02)
PrgProtected	AP protected:   AP is protected by password and cannot be edited. Check:   - PassCode (83.05)
PrgPassword	AP wrong password:   Wrong password is used to unlock AP, Check:   - PassCode (83.05)
FB found	R-type fieldbus adapter found: R-type fieldbus adapter found
Modbus found	R-type Modbus adapter found: R-type Modbus adapter found
COM8 found	SDCS-COM-8 found:   Communication board SDCS-COM-8 found
AIO found	Analog extension module found: Analog extension module found
DIO found	Digital extension module found: Digital extension module found
Drive not responding	Drive not responding:   The communication between drive and DCS Control Panel was not established or was interrupted.   Check:   - Change the DCS Control Panel   - Change the cable / connector which is used to connect the DCS Control Panel to the SDCS-CON-F   - Change the SDCS-CON-F   - Change the SDCS-PIN-F

## Appendix A: Quick start-up diagrams

Drive configuration with reduced components


Appendix A: Firmware structure diagrams

## Terminal locations

## DCS550 module

Terminal allocation


$\begin{gathered} \text { F2/F3 } \\ 135 \mathrm{~A}-520 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { F4 } \\ 610 \mathrm{~A}-1000 \mathrm{~A} \end{gathered}$
Fan supply $230 \mathrm{~V}_{\mathrm{AC}}$ $\square$   X52: $\begin{array}{llllll}5 & 0 & 0 & 3 & 2 & 1 \\ 1\end{array}$	Fan supply $230 \mathrm{~V}_{\mathrm{AC}}$ $\square$   X52: $\begin{array}{lllllll}5 & 4 & 3 & 2 & 1\end{array}$
Fan supply $115 \mathrm{~V}_{\mathrm{A}}$	



## SDCS-CON-F: Terminal allocation



I/O connections


Resolution [bit]	In- / output values hardware	Scaling by	Common mode range	Remarks
15 + sign	$\begin{gathered} \pm 90 \mathrm{~V}, \ldots, 270 \mathrm{~V} \\ \pm 30 \mathrm{~V}, \ldots, 90 \mathrm{~V} \\ \pm 8 \mathrm{~V}, \ldots, 30 \mathrm{~V} \end{gathered}$	Firmware	$\pm 15 \mathrm{~V}$	
15 + sign	$\pm 10$	Firmware	$\pm 15 \mathrm{~V}$	
15 + sign	$\pm 10$	Firmware	$\pm 15 \mathrm{~V}$	
15 + sign	$\pm 10$	Firmware	$\pm 15 \mathrm{~V}$	
15 + sign	$\pm 10$	Firmware	$\pm 15 \mathrm{~V}$	


			Power	
	+10 V			
	-10 V		$\leq 5 \mathrm{~mA}$	
11 + sign	$\pm 10$	Firmware	$\leq 5 \mathrm{~mA}$	
11 + sign	$\pm 10$	Firmware	$\leq 5 \mathrm{~mA}$	
	$\pm 10$	Firmware, Hardware	$\leq 5 \mathrm{~mA}$	$8 \mathrm{~V} \Rightarrow$ min. of $325 \%$ of (99.03) or $230 \%$ of (4.05)


Encoder supply		Remarks
		$\begin{array}{c}\text { Inputs are not isolated } \\ \text { Impedance }=120 \Omega, \text { if selected } \\ \text { maximum frequency } \leq 300 \mathrm{kHz}\end{array}$
$\begin{array}{c\|c}5 \mathrm{~V} \\ 24 \mathrm{~V}\end{array}$	.$\leq 250 \mathrm{~mA}$	
$\leq 200 \mathrm{~mA}$		

correct voltage drops on cable (only <br>
available for 5 V encoders)\end{array}\right]\)

Input	Signal definition	Remarks
$0 \ldots 7.3 \mathrm{~V}$	Firmware	$\Rightarrow$ "0" status
$7.5 \ldots 50 \mathrm{~V}$		$\Rightarrow$ " 1 " status


Output	Signal definition	Remarks
$50^{*} \mathrm{~mA} ;$   22 V at no   load	Firmware	Current limit for all 7 outputs   together is maximum160 mA.   Do not apply any reverse voltages!

* short circuit protected


## Appendix B: Firmware structure diagrams



Appendix B: Firmware structure diagrams
TORQUE CONTROL CHAIN


Winder


## Appendix C: Index of signals and parameters

Index of signals and parameters (alphabetic order)

$2^{\text {nd }}$ LastFault	175	AIO ExtModule	83, 85, 260, 283
$3{ }^{\text {rd }}$ LastFault	175	AITacho Val	159
AccActAdjust	133, 237	AlarmWord1	169, 279
AccActln	237	AlarmWord2	170, 279
AccFiltTime	237	AlarmWord3	170, 279
AccTime1	202	AnybusModType	253
AccTime2	203	AO1 Val	160
AccTrim	133, 237	AO2 Val	160
AdapPrgStat	248	AppILoad	158
AdapProgCmd	114, 247, 293, 295	ApplMacro	62, 262, 269
AdaptKpDiaActln	236	AppIRestore	62, 262
AdaptKpMax	132, 147, 237	ArmAlpha	156
AdaptKpMin	132, 147, 236	ArmAlphaMax	198
AdaptKpOutDest	237	ArmAlphaMin	198, 290
AdaptKpSPC	237	ArmOvrCurLev	210, 270, 282
Add1	135, 245	ArmOvrVoltLev	210, 273, 282
Add1Cmd	135	ArmVoltAct	152
Add1In1	244	ArmVoltActRel	152
Add1In2	244	AuxCtrIWord	77, 88, 89, 163
Add1OutDest	135, 244	AuxCtrlWord2	163
Add1ReleaseCmd	244	AuxSpeedRef	206
Add2	135, 245	AuxStatWord	78, 88, 89, 165
Add2Cmd	135	BalRampRef	203
Add2In1	245	BalRef	207
Add2In2	245	Baud rate	104
Add2OutDest	135, 245	Baudrate	87, 89
Add2ReleaseCmd	245	BaudRate	100, 228
AI Mon4mA	214, 273, 286, 291	Block10Out	252
Al1 Val	159	Block11Out	252
Al1 ValScaled	160	Block12Out	252
Al1HighVal	84, 187	Block130ut	252
Al1LowVal	84, 187	Block14Out	253
Al2 Val	159	Block15Out	253
Al2 ValScaled	160	Block16Out	253
Al2HighVal	187	Block1Attrib	250
Al2LowVal	187	Block1In1	249
Al3 Val	160	Block1In2	249
Al3 ValScaled	160	Block1In3	249
Al3HighVal	188	Block1Out	251
Al3LowVal	188	Block1Output	250
Al4 Val	160	Block1Type	249
Al4 ValScaled	160	Block2Out	251
Al4HighVal	188	Block3Out	252
Al4LowVal	188	Block4Out	252
Al5 Val	160	Block50ut	252
AI5 ValScaled	160	Block60ut	252
Al5HighVal	189	Block7Out	252
AI5LowVal	189	Block8Out	252
Al6 Val	160	Block9Out	252
Al6 ValScaled	160	BreakPoint	248
Al6HighVal	84, 190	BridgeTemp	153, 270
AI6LowVal	84, 190	Com8SwVersion	293


ComLossCtrl	77, 214, 272, 285, 291	Data2	195
Comm rate	97, 102	Data3	195
CommandSel 73	91, 92, 94, 95, 97, 100,	Data4	195, 292
102, 104, 146, 17		Data5	195
CommModule 8	97, 100, 102, 103, 258,	Data6	195
283, 285, 291		Data7	195
Constant1	250	Data8	196
Constant10	251	Data9	196
Constant2	251	DC BreakAck	79, 182, 289
Constant3	251	DecTime1	202
Constant4	251	DecTime2	203
Constant5	251	DerivFiltTime	207
Constant6	251	DerivTime	207
Constant7	251	DeviceName	262
Constant8	251	DevLimPLL	256
Constant9	251	DHCP	97, 102
ConstSpeed1	186	DI StatWord	79, 80, 166
ConstSpeed2	187	DI10Invert	183
ConvCurAct	152	DII1Invert	79, 183
ConvCurActRel	152, 277	DIIInvert	79, 182
ConvModeAI1	84, 187	DI2Invert	182
ConvModeAI2	188	DI3Invert	182
ConvModeAI3	188	DI4Invert	182
ConvModeAI4	189	DI5Invert	182
ConvModeAI5	190	DI6Invert	182
ConvModeAI6	84, 191	DI7Invert	182
ConvModeAO1	85, 86, 192	DI8Invert	182
ConvModeAO2	192	D19Invert	183
ConvModeAO3	193	Diagnosis	171, 283, 292
ConvModeAO4	85, 193	DiaLineSpdIn	131, 235
ConvNomCur	60, 85, 157	DiameterAct	236
ConvNomVolt	60, 157	DiameterMin	236
ConvOvrCur	157, 270	DiameterMin	130
ConvType	60, 157	DiameterSetCmd	146, 236
CPU Load	158	DiameterValue	146, 235
CtrlMode	153	DiaMotorSpdIn	131, 235
CtrlWordAO1	192	DiaMotorSpdLev	236
CtrlWordAO2	192	DiaRampTime	236
CtrIWordAO3	193	DIO ExtModule1	79, 81, 258, 283
CtriWordAO4	193	DIO ExtModule2	79, 81, 259, 283
CurCtrlintegOut	156	Direction	79, 176
CurCtrlStat1	76, 77, 160, 272	DirectSpeedRef	206
CurCtrlStat2	161	DispParam1Sel	218, 265
CurRef	156	DispParam2Sel	218, 265
CurRefExt	222	DispParam3Sel	218, 265
CurRefSlope	222	DO CtrlWord	81, 164
CurRefUsed	156, 272, 290	DO StatWord	81, 166
CurRipple	276	D01BitNo	191
CurRippleFilt	152, 276	DO1Index	81, 191
CurRippleLim	212, 276, 284, 290	DO2BitNo	191
CurRippleSel	212, 276, 284, 290	DO2Index	191
CurSel	84, 222	DO3BitNo	191
Data1	132, 146, 195, 292	DO3Index	191
Data10	196	DO4BitNo	191
Data11	196	DO4Index	191
Data12	196	DO8BitNo	192

Appendix C: Index of signals and parameters


Input 3	98, 103	M1RecoveryTime	217
Input 4	98, 103	M1RecoveryTime	275
Input I/O par 9	92, 95	M1RecoveryTime	290
Input instance	92, 95	M1SpeedFbSel 78	78, 226, 267, 278, 284, 291, 293
IP address 1	98, 102	M1SpeedMax	130, 197, 291
IP address 2	98, 102	M1SpeedMin	130, 196, 291
IP address 3	98, 102	M1SpeedScale	130, 225, 291
Jog1	79, 181	M1TachMaxSpeed	d 253
Jog2	79, 181	M1TachoAdjust	227
JogAccTime	204	M1TachoGain	253
JogDecTime	204	M1TachoTune	253
KpEMF	224	M1TachoVolt1000	227
KpPID	218	M1TempSel	84, 217, 273
KpPLL	257	M1TiArmCur	222
KpS	207	M1TiFex	224
KpS2	207	M1UsedFexType	263
Language	261, 264	M1ZeroSpeedLim	197, 293
LastFault	175	MacroSel	62, 167
LimWord	166	MainContAck	79, 181, 272, 285
LineSpdNegLim	232	MainContCtrlMode	e 73, 78, 201
LineSpdPosLim	130, 147, 232	MainCtrlWord 73,	3, 89, 91, 94, 97, 100, 102, 104,
LineSpdScale	130, 147, 232	146, 162	
LineSpdUnit	130, 232	MainsCompTime	256
LoadComp	209	MainsFreqAct	153
LoadShare	208	MainStatWord 73,	, 89, 94, 97, 100, 102, 104, 164
LocalLossCtrl	77, 214, 272, 286, 292	MainsVoltAct	152
LocationCounter	248	MainsVoltActRel	152
LocLock	194	MaxBridgeTemp	60, 158, 270, 282, 289
M1AlarmLimLoad	216, 274, 283, 290	MaxEncoderTime	226
M1AlarmLimTemp	217, 273, 283, 289	Modbus timeout	98, 103
M1ArmL	222	ModBusModule2	100
M1ArmR	223	Module baud rate	91, 92, 94, 95
M1BaseSpeed	261, 267, 291	Module macid	91, 92, 94, 95
M1CurLimBrdg1	198	ModuleType 87, 89	89, 91, 92, 94, 95, 97, 102, 104
M1CurLimBrdg2	198	Mot1FexType	157
M1DiscontCurLim	222	Mot1FldCur	153
M1EncPulseNo	226	Mot1FIdCurRel	153
M1FaultLimLoad	216, 274, 283	Mot1TempCalc	152, 274
M1FaultLimTemp	217, 273, 283	Mot1TempMeas	153
M1FIdHeatRef	75, 224	MotCur	151, 290
M1FldMinTrip	74, 211, 278, 286	MotFanAck	28, 79, 177, 272, 284
M1FldOvrCurLev	211, 276, 284	MotNomTorque	278
M1KlixonSel	79, 217, 273, 283	MotPotDown	79, 186
M1KpArmCur	222, 284, 290	MotPotMin	79, 186
M1KpFex	223	MotPotUp	79, 185
M1LoadCurMax	217, 275, 290	MotSpeed89, 94, 97	97, 101, 102, 104, 131, 151, 285
M1ModelTime	216, 274	MotSpeedFilt	151
M1MotNomCur	275	MotTorq	148, 152
M1NomCur	85, 261, 270	MotTorqFilt	105, 134, 151
M1NomFldCur	262, 276, 278	MotTorqNom	133, 158
M1NomVolt	261, 273	Node address	104
M1OvrLoadTime	217	Node ID	87, 89
M1OvrLoadTime	275	NomMainsVolt	262, 271, 283, 290
M1OvrLoadTime	290	Off1Mode	74, 77, 200
M1OvrSpeed	211, 278, 285, 290	Off2	79, 178, 289
M1PosLimCtrl	225	OffsetIDC	257

Appendix C: Index of signals and parameters

OnOff1	73, 79, 180	RX-PDO21-2ndSubj	87, 89
Output 1	98, 103	RX-PDO21-2ndtObj	87, 89
Output 2	98, 103	RX-PDO21-3rdObj	87, 89
Output 3	98, 103	RX-PDO21-3rdSubj	88, 89
Output 4	98, 103	RX-PDO21-4thObj	88, 89
Output I/O par 1	92, 95	RX-PDO21-4thSubj	88, 89
Output instance	92, 95	RX-PDO21-Enable	87, 89
Par2Select	79, 208	RX-PDO21-TxType	87, 89
ParApplSave	194	S BlockBrdg2	60
ParChange	79, 179	S BlockBridge2	256
Parity	100, 229	S MaxBrdgTemp	256, 270
ParLock	194	S MaxBrdgTemp	60
PassCode	248, 295	S MaxBridgeTemp	282, 289
PDO21 Cfg	87, 89	ScaleAO1	86, 192
PID Act1	132, 219	ScaleAO2	193
PID Act2	219	ScaleAO3	193
PID Mux	220	ScaleAO4	86, 193
PID Out	132, 156	SelBridge	162
PID OutDest	220	ServiceMode	261, 269, 290, 291
PID OutMax	220	SetSystemTime	194
PID OutMin	220	ShapeTime	202
PID OutScale	221	SpeedActEMF	151
PID Ref1	220	SpeedActEnc	151, 277
PID Ref1Max	219	SpeedActEnc2	277
PID Ref1Min	219	SpeedActTach	151, 277
PID Ref2	220	SpeedCorr	132, 205
PID Ref2Max	219	SpeedErrFilt	205
PID Ref2Min	219	SpeedErrFilt2	206
PID ReleaseCmd	221	SpeedErrNeg	153
PID ResetBitNo	221	SpeedFbFltMode	77, 216, 270, 284, 291
PID ResetIndex	221	SpeedFbFItSel	212, 277, 284, 291
PIDRef1	132	SpeedFbMonLev	211, 277
PLL In	156	SpeedFiltTime	227
PLLIn	284	SpeedLev	227
Pot1	263	SpeedRampOut	156
Pot2	263	SpeedRef 89, 91, 94	100, 102, 104, 150, 204
PowrDownTime	213, 271, 283	SpeedRef2	153
PPO-type	104	SpeedRef3	131, 153
ProgressSignal	158	SpeedRef4	154
Protocol	97, 98, 102, 103	SpeedRefExt1	155
PwrLossTrip	213, 270, 271, 283, 290	SpeedRefExt2	156
PZD10 IN	104	SpeedRefScale	206
PZD10 OUT	104	SpeedRefUsed	148, 154
PZD3 IN	104	SpeedScaleAct 88,	2, 95, 98, 101, 103, 104,
PZD3 OUT	104	130, 148, 150, 155, 2	
QuadrantType	60, 157	SpeedShare	205
Ramp2Select	204	SpeedStep	206
Ref1Mux	79, 183	SqrWavelndex	263
Ref1Sel 84, 87, 8	92, 94, 95, 97, 100, 102,	SqrWavePeriod	263
104, 146, 184		SquareWave	156
Ref2Mux	79, 185	StallSpeed	210, 278, 285
Ref2Sel	84, 184	StallTime	210, 278, 285
Reset	79, 177	StallTorq	210, 278, 285
RevDly	223, 272, 287	StartStop	73, 79, 180
RX-PDO21-1stObj	87, 89	StationNumber	100, 228
RX-PDO21-1stSub	87, 89	Stop function	91, 92, 95, 98, 103


StopMode	74, 77, 200	TorqPropRef	153
String1	121, 251	TorqRef1	154
String2	121, 251	TorqRef2	88, 89, 101, 154
String3	121, 251	TorqRef3	154
String4	121, 251	TorqRef4	154
String5	121, 251	TorqRefA	87, 89, 100, 105, 208
Subnet mask 1	98, 102	TorqRefA Sel	84
Subnet mask 2	98, 102	TorqRefExt	84, 155
Subnet mask 3	98, 102	TorqRefUsed	86, 154
Subnet mask 4	98, 102	TorqSel	209
SysFaultWord	171	TorqUsedMax	155
SysPassCode	194	TorqUsedMaxSel	84, 198
SystemTime	160	TorqUsedMin	155
TachoTerminal	159	TorqUsedMinSel	84, 199
TaperDia	240	TransparentIProfil	88, 90
TaperDiaActIn	240	TTT DiaActln	242
TaperTens	240	TTT Ref1In	242
TdFiltPID	219	TTT Ref2ln	242
TdPID	219	TTT Ref3In	242
TensionOnCmd	231	TTT Scale	242
TensionRef	241	TX-PDO21-1stObj	88, 90
TensPulseCmd	241	TX-PDO21-1stSubj	88, 90
TensPulseLevel	241	TX-PDO21-2ndSub	88, 90
TensPulseWidth	241	TX-PDO21-2ndtObj	88, 90
TensRampHoldCmd	241	TX-PDO21-3rdObj	88, 90
TensRampTime	240	TX-PDO21-3rdSubj	88, 90
TensRefin	146, 240	TX-PDO21-4thObj	88, 90
TensRefMin	240	TX-PDO21-4thSubj	88, 90
TensSetCmd	240	TX-PDO21-Enable	88, 89
TensToTorq	242	TX-PDO21-EvTime	88, 89
TensValueln	240	TX-PDO21-TxType	88, 89
TestSignal	263	TypeCode 60	269, 270, 282, 285, 289
TfPLL	257	UNetMin1	213, 270, 283, 290
TiEMF	224	UNetMin2	213, 270, 283, 290
TimeLevSel	248, 293	UsedMCW	73, 77, 164
TiPID	219	UsedWCW	131, 233
TiS	207	UserAlarmWord	279
TiS2	208	UserFaultWord	279
TiSInitValue	207	VarSlopeRate	203
ToolLinkConfig	194	VoltActRel	152
TopBottomCmd	131, 146, 231	VoltRef1	156
TorqActFiltTime	257	VSA I/O size	92, 95
TorqDerRef	153	WindCtrIWord	131, 233
TorqGenMax	199	WinderMacro	130, 136, 137, 146, 229
TorqIntegRef	153	WinderOnCmd	146, 231
TorqLimAct	155	WinderTuning	133, 234, 291
TorqMax	197	WindSpdOffset	130, 232
TorqMaxAll	154	WindStatWord	233
TorqMaxSPC	150, 197	WindUnwindCmd	131, 146, 230
TorqMaxTref	198	WinWidthNeg	206
TorqMin	197	WinWidthPos	205
TorqMinAll	154	WiPassCode	246
TorqMinSPC	197	WiProgCmd	130, 146, 246
TorqMinTref	198	WiUserMode	246
TorqMux	79, 210	WriteToSpdChain	130, 230
TorqMuxMode	209	ZeroCurTimeOut	257, 272, 287

Appendix C: Index of signals and parameters


ABB Automation Products Wallstadter-Straße 59 68526 Ladenburg • Germany
Tel: $\quad+49$ (0) 6203-71-0
Fax: $\quad+49$ (0) 6203-71-76 09
www.abb.com/motors\&drives

DCS550-S modules
The compact drive fo
machinery application


20	$\ldots$	1,000
$\mathrm{~A}_{\mathrm{DC}}$		
0	$\ldots$	$610 \mathrm{~V}_{\mathrm{DC}}$
230	$\ldots$	$525 \mathrm{~V}_{\mathrm{AC}}$
IP00		

DCS800-S modules The versatile drive for processindustry

20	$\ldots$	$5,200 \mathrm{~A}_{\mathrm{DC}}$
0	$\ldots$	$1,160 \mathrm{~V}_{\mathrm{DC}}$
230	$\ldots$	$1,000 \mathrm{~V}_{\mathrm{AC}}$
IPOO		

DCS800-A enclosed converters
Complete drive solutions

20	$\ldots$	20,000
$\mathrm{~A}_{\mathrm{DC}}$		
0	$\ldots$	1,500
230	$\ldots$	1,200
$\mathrm{~V}_{\mathrm{DC}}$		
IP21 $-\operatorname{IP} 54$		

DCS800-E series
Pre-assembled drive-kits
20 ... $2,000 \mathrm{~A}_{\mathrm{DC}}$
$0 \quad \ldots \quad 700 \mathrm{~V}_{\mathrm{DC}}$
$230 \ldots \quad 600 \mathrm{~V}_{\mathrm{AC}}$
IP00

DCS800-R Rebuild Kit
Digital control-kit for existing powerstacks
$\begin{array}{llr}20 & \ldots & 20,000 \mathrm{~A}_{\mathrm{DC}} \\ 0 & \ldots & 1,160 \mathrm{~V}_{\mathrm{DC}} \\ 230 & \ldots & 1,200 \\ \mathrm{~V}_{\text {AC }}\end{array}$
IP00

- Compact
- Robust design
- Adaptive and winder program
- High field exciter current
- Compact
- Highest power ability
- Simple operation
- Comfortable assistants, e.g. for commissioning or fault tracing
- Scalable to all applications
- Free programmable by means of integrated IEC61131-PLC
- Individually adaptable to customer requirements
- User-defined accessories like external PLC or automation systems can be included
- High power solutions in 6-and 12-pulse up to $20,000 \mathrm{~A}, 1,500 \mathrm{~V}$
- In accordance to usual standards
- Individually factory load tested
- Detailed documentation
- DCS800 module with all necessary accessories mounted and fully cabled on a panel
- Very fast installation and commissioning
- Squeezes shut-down-times in revamp projects to a minimum
- Fits into Rittal cabinets
- Compact version up to 450 A and Vario version up to $2,000 \mathrm{~A}$
- Proven long life components are re-used, such as power stacks, (main) contactors, cabinets and cabling / busbars, cooling systems
- Use of up-to-date communication facilities
- Increase of production and quality
- Very cost-effective solution
- Open Rebuild Kits for nearly all existing DC drives
- tailor-made solutions for...
- BBC PxD
- BBC SZxD
- ASEA TYRAK
I. other manufacturers


[^0]:    Configuration 4
    F4

[^1]:    Accessories

[^2]:    Communication

[^3]:    14.01 DO1Index (digital output 1 index)

    Digital output 1 is controlled by a selectable bit - see DO1BitNo (14.02) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Examples:

[^4]:    8

